ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد بردار 23 ص

اختصاصی از ژیکو تحقیق در مورد بردار 23 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

بردار

کلمه بردار به معنای حمل کننده میباشد و از یک کلمه لاتین به همین معنا گرفته شده است.یک بردار به عنوان یک عنصر از فضای برداری تعریف میشودو در فضای nبعدی دارای n مولفه است.پس بدیهی است که یک بردار در صفحه دارای دو مولفه میباشدو یا در فضای سه بعدی سه مولفه را اختیار میکند.بردارها در علوم مختلف مانند فیزیک کاربردهای فراوانی دارند و بدون آنها نمیتوان بسیاری از مولفه های فیزیکی مانند سرعت ، شتاب و... را تفسیر و تعریف نمود.

کمیتی که علاوه بر اندازه دارای جهت نیز باشد. مهم ترین کمیت های برداری که می‌‌توان نام برد عبارت‌اند از:

۱- مکان ۲- سرعت ۳- شتاب ۴- نیرو ۵- میدان های الکتریکی و مغناطیسی

یکی از بهترین راهای تشخیص برداری بودن یا نبودن یک کمیت اینست که بررسی کنیم آیا جمع آن کمیت خاصیت برداری دارد یا خیر. مثلاً جریان الکتریکی با وجود آنکه علاوه بر اندازه جهت نیز دارد ولی برداری نیست زیرا جمع جریان ها به صورت اسکالر صورت می‌‌گیرد (قانون جریان کیرشهف).

در حالت بسیار کلی هر مجموعه عدد که به صورت یک ماتریس ستونی n*۱ قابل نوشتن باشد بردار گفته می‌شود. کاربرد این مفهوم در توصیف حالت سیستم ها به مراتب بیشتر از محاسبات پدیده‌های فیزیکی است.

خصوصیات بردارها

بردارها را میتوان با یکدیگر جمع (جمع بردارها) و یا ضرب (ضرب بردارها) کرد.البته ضرب دو بردار با ضرب یک اسکالردر آن فرق میکند.ضرب بردارها سه نوع است که عبارتنداز ضرب داخلی ، ضرب خارجی و ضرب مستقیم تانسوری که حاصل همه این ضربها لزوما یک بردار نیست.

هر بردار دارای دو مولفه است که این دو مولفه عبارتند از طول بردار و جهت بردار.همچنین هر بردار دارای یک ابتدا و یک انتها نیز هست. برداری که دارای طول واحد باشدبردارواحد مینامند و برداری که طول آن صفر است را بردارصفر مینامند.

جبر برداری

مجموع اعمال ریاضی شامل جمع ، ضرب ، مشتق ، انتگرال و... که بر روی بردارها انجام می‌شود، بر اساس قواعد و اصول خاصی قابل اجراست. مجموعه این قوانین در مبحثی تحت عنوان جبر برداری مورد بحث قرار می‌گیرند.

اطلاعات اولیه

بحث حرکت در دو یا سه بعد با وارد کردن مفهوم بردار بسیار ساده می‌شود. یک بردار از نظر هندسی به صورت کمیتی فیزیکی تعریف می‌شود که بوسیله اندازه و جهت در فضا مشخص می‌شود. به عنوان مثال می‌توان به سرعت و نیرو اشاره کرد که هر دو کمیتی برداری هستند. هر بردار را با یک پیکان که طول و جهت آن نمایشگر اندازه و جهت بردار است، نمایش می‌دهند. جمع دو یا چند بردار را می‌توان بر اساس راحتی کار با استفاده از روشهای متوازی الضلاع یا روش تصاویر که در آن هر بردار را به مولفه‌هایش در امتداد محورهای مختصات تجزیه می‌کنند، انجام داد.

ضرب بردارها

ضرب بردار در حالت کلی به دو صورت ضرب نقطه‌ای یا عددی و ضرب برداری انجام می‌شود. در ضرب عددی یا اسکالر یا نقطه‌ای که با نماد A.B نمایش داده می‌شود، حاصضرب برابر با است با حاصضرب اندازه یک بردار در اندازه تصویر بردار دیگر بر روی آن. طبیعی است که اگر دو بردار بر هم عمود باشند، حاصضرب آنها صفر خواهد بود. اما در ضرب برداری که بصورت A×B نمایش داده می‌شود، نتیجه حاصضرب ، برداری است که جهت آن با استفاده از قاعده دست راست تعیین می‌شود و اندازه آن با حاصضرب اندازه دو بردار در سینوس زاویه بین آنها برابراست. ضرب برداری علاوه بر دو حالت فوق می‌تواند بصورت مختلط نیز باشد. به عنوان مثل اگر C , B , A سه بردار دلخواه باشند در این صورت می‌توان ضربهایی به شکل A.B×C یا A×B×C نیز تشکیل داد. اما همواره باید توجه داشته باشیم که نتیجه حاصلضرب اسکالر یا عددی یک عدد است در صورتی که نتیجه حاصلضرب برداری یک بردار است.

قاعده دست راست

قاعده دست راست که در بیشتر مسائل فیزیک که با بردارها سر و کار دارند مطرح است، به این صورت بیان می‌شود. فرض کنید A و B دو بردار دلخواهی هستند که به صورت برداری در یکدیگر ضرب می‌شود. برای تعیین جهت بردار حاصضرب کافی است چهار انگشت دست راست را در راستای بردار اول قرار داده و بوسیله چهار انگشت خود این بردار را بطرف بردار دوم بچرخانیم، در این صورت جهت انگشت شست دست راست در راستای بردار منتجه خواهد بود

مشتق گیری برداری

برای مشتق گیری برداری قواعد خاصی وجود دارد که به صورت زیر اشاره می‌شود.

مشتق جمع دو یا چند بردار با مجموع مشتقات تک تک آنها برابر است.

مشتق حاصضرب دو بردار (خواه اسکالر خواه برداری) برابر است با مجموع دو جمله ، که جمله اول شامل حاصضرب مشتق بردار اول در خود بردار دوم و جمله دوم برابر با حاصضرب خود بردار اول در مشتق بردار دوم است. بدیهی است که مشتق حاصلضرب چندین بردار نیز به همین صورت تعریف می‌شود. یعنی به تعداد بردارهایی که در هم ضرب می‌شوند، جمله وجود دارد و در هر جمله مشتق یک بردار وجود دارد. علاوه بر این مشتقات مراتب بالاتر (مشتق دوم و بیشتر) نیز به همین صورت انجام می‌شود.

انتگرال گیری برداری

در حالت کلی سه بعدی دو نوع تابع می‌توان در نظر گرفت. توابع نقطه‌ای اسکالر و توابع نقطه‌ای برداری. به عنوان مثال تابع انرژی پتانسیل یک تابع نقطه‌ای اسکالر است، در صورتی که شدت میدان الکتریکی یک تابع نقطه‌ای برداری است. همچنین انتگرال گیری نیز می‌تواند به سه صورت خطی ، سطحی و حجمی صورت گیرد. در حالت اول انتگرال گیری بر روی یک منحنی صورت می‌گیرد. اما در حالت دوم انتگرال گیری روی یک سطح و سرانجام در حالت چهارم روی یک حجم صورت می‌گیرد. نکته قابل توجه در اینجا این است که انتگرال گیری با توجه به تقارن موجود و نیز نوع تابع مسئله در سیستمهای


دانلود با لینک مستقیم


تحقیق در مورد بردار 23 ص

دانلود پاورپوینت تصویر قائم یک بردار و قرینه آن نسبت به امتداد بردار دیگر - ریاضی چهارم- 26 اسلاید

اختصاصی از ژیکو دانلود پاورپوینت تصویر قائم یک بردار و قرینه آن نسبت به امتداد بردار دیگر - ریاضی چهارم- 26 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت تصویر قائم یک بردار و قرینه آن نسبت به امتداد بردار دیگر - ریاضی چهارم- 26 اسلاید


دانلود پاورپوینت تصویر قائم یک بردار و قرینه آن نسبت به امتداد بردار دیگر - ریاضی چهارم- 26 اسلاید

 

 

 

 

 

 

4- اندازه ی بردارهای      و        همواره با هم برابر است یعنی:

5- بردارهای                 و                 همواره بر بردار      و      عمودند.

6- اگر بردار      تصویر قائم بردار     در امتداد بردار      باشد آن گاه با توجه به تعبیر هندسی ضرب داخلی دو بردار داریم:


دانلود با لینک مستقیم


دانلود پاورپوینت تصویر قائم یک بردار و قرینه آن نسبت به امتداد بردار دیگر - ریاضی چهارم- 26 اسلاید

پاورپوینت جامع و کامل درباره ماشین بردار پشتیبان

اختصاصی از ژیکو پاورپوینت جامع و کامل درباره ماشین بردار پشتیبان دانلود با لینک مستقیم و پر سرعت .

پاورپوینت جامع و کامل درباره ماشین بردار پشتیبان


پاورپوینت جامع و کامل درباره ماشین بردار پشتیبان

فرمت فایل : power point  (لینک دانلود پایین صفحه) تعداد اسلاید  : 77 اسلاید

 

 

 

 

 

 

مقدمه :

lSVM  دسته بندی کننده ای است که جزو شاخه Kernel Methods  دریادگیری ماشین محسوب میشود.
lSVMدر سال 1992 توسط Vapnik معرفی شده و بر پایه statistical learning theory  بنا گردیده است.
lشهرت SVM بخاطر موفقیت آن در تشخیص حروف دست نویس است که با شبکه های عصبی بدقت تنظیم شده برابری میکند: 1.1% خطا
 
lهدف این دسته الگوریتم ها تشخیص و متمایز کردن الگوهای پیچیده در داده هاست ( از طریق کلاسترینگ، دسته بندی، رنکینگ، پاکسازی و غیره)
lمسایل مطرح:
lالگوهای پیچیده را چگونه نمایش دهیم
lچگونه از مسئله overfitting پرهیز کنیم
 
 
 
ایده اصلی :
lبا فرض اینکه دسته ها بصورت خطی جداپذیر باشند، ابرصفحه هائی با حداکثر حاشیه (maximum margin)  را بدست می آورد که دسته ها را جدا کنند.
lدر مسایلی که داده ها بصورت خطی جداپذیر نباشند داده ها به فضای با ابعاد بیشتر نگاشت پیدا میکنند تا بتوان آنها را در این فضای جدید بصورت خطی جدا نمود.
 

دانلود با لینک مستقیم


پاورپوینت جامع و کامل درباره ماشین بردار پشتیبان