ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد مدل‌سازی واکنش کاتالیستی اکسایش متانول به فرمالدیید در یک راکتور بستر سیال 13 ص

اختصاصی از ژیکو تحقیق درمورد مدل‌سازی واکنش کاتالیستی اکسایش متانول به فرمالدیید در یک راکتور بستر سیال 13 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

مدل‌سازی واکنش کاتالیستی اکسایش متانول به فرمالدیید در یک راکتور بستر سیال

چکیده

تولید فرمالدیید که یکی از ترکیب‌های پرارزش و پرمصرف است به طور معمول از اکسایش کاتالیستی متانول در راکتورهای بستر ثابت به دست می‌آید. در این تحقیق فرایند ذکر شده در راکتور بستر سیال مورد مطالعه قرار گرفته است. بدین منظور یک راکتور بستر سیال به قطر 22 میلیمتر و طول 50 سانتیمتر از جنس فولاد زنگ‌نزن که قابلیت کنترل دما و شدت جریان مواد را داراست ساخته شده است. اثر پارامترهای متفاوت عملیاتی بر عملکرد راکتور بالا مطالعه شده است. نتیجه‌ها با سه مدل سه فازی تطبیق داده شده و میزان دقت مدل‌ها در پیش‌بینی رفتار راکتور مشخص شده است. نتیجه‌ها نشان می‌دهد که تحت شرایط مناسب میزان تبدیل متانول به فرمالدیید تا 89 درصد افزایش می‌یابد و با بالا رفتن سرعت گاز در بستر سیال این میزان کاهش می‌یابد که دلیل آن کاهش زمان اقامت و در نتیجه کاهش تماس متانول با فرمالدیید است. بررسی مدل‌ها نشان می‌دهد که بیشترین انحراف مربوط به مدل Shiau _ Lin با 23 درصد خطا و بیشترین تطابق مربوط به مدل El_Rafai و El_Halwagi با 10 درصد خطا می‌باشد. بنابراین در این واکنش جریان‌های برگشتی به دلیل کوچک بودن قطر راکتور در مقایسه با طول آن از اهمیت کمتری برخوردار است.

مقدمه

بسترهای سیال از جمله دستگاه‌های مهم عملیاتی در فرایندهای شیمیایی هستند که درآنها محدودیت‌هایی از قبیل انتقال حرارت یا نفوذ وجود دارد. از جمله مزایای راکتورهای بستر سیال نسبت به راکتورهای بستر ثابت کنترل دمای بهتر، عدم وجود نقطه‌های داغ در بستر، توزیع یکنواخت کاتالیست در بستر و عمر طولانی کاتالیست است. بنابراین انجام فرایندها در بستر سیال می‌تواند حایز اهمیت باشد. یکی از موارد مهم در بسترهای سیال مدل‌سازی آنهاست. مدل‌سازی راکتورهای بستر سیال ابتدا با نظریه محیط دوفازی آغاز شد. در بین مدل‌های اولیه دوفازی می‌توان از مدل Davidsoin_Harrison نام برد.

در این مدل فاز چگال (امولسیون) و فاز حباب‌های گاز دو فاز مدل را تشکیل می‌دهند و افزون بر این فرض شده است که فاز امولسیون در حداقل سرعت سیالیت باقی می‌ماند و نیز قطر حباب در طول بستر ثابت بوده و واکنش در فاز امولسیون اتفاق می‌افتد و انتقال جرم بین دو فاز صورت می‌گیرد. این مدل بر مبنای اصول هیدرودینامیک بنا شده است ولی جریانهای برگشتی در فاز امولسیون را درنظر نمی‌گیرد. Fryer مدل جریان برگشتی غیر همسو را که بر مبنای مدل بستر حبابی بود ارایه کرد و سرعت جریان برگشتی جامد را برابر با حداقل سرعت سیالیت در نظر گرفت.

مدل سه فازی Kunii و Levenspiel بر اساس اصول هیدرودینامیک بنا شده و بستر از سه ناحیه حباب، ابر و امولسیون تشکیل شده به طوری که دنباله به عنوان بخشی از فاز ابر در نظر گرفته می‌شود. حباب صعود کننده از مدل Davidsoin پیروی می‌کند و فاز امولسیون در شرایط حداقل سیالیت باقی می‌ماند که در آن پارامتر اصلی قطر حباب است که در بستر توزیع می‌شود و یک قطر موثر در طول بستر در نظر گرفته می‌شود. واکنش درجه اول و جریان در فاز حباب، پلاگ در نظر گرفته می‌شود. تبادل جرم بین فازهای حباب _ ابر و ابر_ امولسیون صورت می‌گیرد.

بخش تجربی

مواد شیمیایی

متانول، هپتامولیبیدات آمونیوم، آهن نیترات، بیسموت نیترات از شرکت MERCK و از نوع آزمایشگاهی تهیه و در تمام فرایند از آب مقطر استفاده شد.

تجهیزات و دستگاه‌ها

برای ساخت کاتالیست از هم‌زن آزمایشگاهی با دور قابل تنظیم 50 تا rmp1500 ساخت شرکت طب‌آزما و برای تنظیم شرایط واکنش ساخت کاتالیست از حمام با دمای ثابت مجهز به ترموستات و Ph متر دیجیتال استفاده شد. راکتور مورد استفاده به قطر داخلی 22 میلیمتر و ارتفاع 50 سانتیمتر دارای 5 قسمت مجزا و مجهز به ترموکوپل نوع K برای اندازه‌گیری پروفایل دمایی در طول بستر است. جنس راکتور و تجهیزات آن از جنس فولاد زنگ‌نزن L 316 AISI است. برای گرم کردن هوا از دو کوره سری با توان W 1500 برای هر کدام و برای تبخیر متانول از یک کوره به توان KW 1 به صورت مجزا استفاده شد. سیستم کنترل از نوع PID و حس‌گر دما از نوع K می‌باشد. شماتیک سیستم مورد استفاده در شکل 1 آمده است. نتیجه‌ها با استفاده از SHIMATZU GC 17A تجزیه شد.

شکل ص 61

شکل 1 _ نمای کلی راکتور بستر سیال مورد استفاده

روش آزمایش

برای انجام آزمایش 2 تا 3 گرم کاتالیست را در راکتور قرار داده و سیستم با گاز نیتروژن به مدت 2 ساعت تمیز شد تا شرایط دمایی در سیستم برقرار شود. سپس به آهستگی جریان هوا روی سیستم باز شده و جریان نیتروژن قطع شد سپس به آهستگی جریان متانول ورودی به کوره تبخیر برقرار شد تا میزان متانول به حد مطلوب و مشخص برسد. پس از گذشت 10 دقیقه نمونه‌گیری و تجزیه خروجی از کندانسور انجام و این عمل در فاصله‌های زمانی معین تکرار شد تا خروجی راکتور به شرایط پایدار برسد.

شرایط عملیاتی جریان سیال حبابی

در راکتورهای بستر سیال حرکت رو به بالای حباب‌های گاز سبب اختلاط در فاز امولسیون و ایجاد شرایط همگن در راکتور می‌شود. بنابراین برای برقراری این نظام جریان در راکتور بایستی پارامترهای عملیاتی سیستم تنظیم شود.

از جمله این پارامترها می‌توان به سرعت گاز ورودی اشاره کرد. این سرعت تابعی از اندازه و چگالی ذره‌ها و نیز چگالی گاز سیال‌کننده و برخی پارامترهای فیزیکی دیگر می‌باشد. در تحقیقات حاضر اندازه ذره‌های کاتالیست بین 147 تا 417 میکرومتر و حداقل سرعت سیال‌سازی بین 98 تا 333 سانتیمتر بر ثانیه است. لذا با توجه به شرایط عملیاتی ذکر شده همواره نظام جریان سیال حبابی برقرار بوده است.

نتیجه‌گیری نهایی

اکسایش جزیی کاتالیستی متانول به فرمالدیید به طور عمومی در راکتورهای بستر ثابت انجام می‌شود اما عدم کنترل موثر دما در راکتور و نیز محدودیت اندازه ذره‌ها، مشکل‌های افت فشار یا مقاومت‌های نفوذی را در پی دارد. همچنین نتیجه‌های به دست آمده در مطالعه حاضر نشان می‌دهد که واکنش‌هایی مانند تبدیل متانول به فرمالدیید به سادگی و با بازده بالا در راکتورهای بستر سیال قابل اجراست. نتیجه‌های بررسی حاضر حاکی از آن است که راکتورهای بستر سیال محتوی ذره‌های ریز کاتالیست اکسید آهن _ اکسید مولیبیدن، به علت ایجاد تبدیل بالای متانول، سطح تماس مطلوب، گزینش‌پذیری مناسب و ساییدگی اندک ذره‌ها، بهترین شرایط عملیاتی را برای اکسایش متانول به فرمالدیید فراهم می‌آورد. بسترهای سیال دارای بازده پایین‌تری نسبت به بسترهای ثابت هستند اما مزایای فراوان این بسترها آنها را عنوان انتخابی برجسته و ممتاز نسبت به بسترهای ثابت درآورده است. مناسب‌ترین مدل برای تطبیق داده‌های تجربی در این مطالعه EL_Rafai و El_ Halwagi است. نتیجه‌های به دست آمده از این سیستم نشان می‌دهد که تحت شرایط مناسب میزان تبدیل متانول به فرمالدیید در محدوده مورد بحث تا 89 درصد افزایش می‌یابد. نتیجه‌ها نشان می‌دهد که بالا رفتن سرعت گاز در بستر سیال باعث کاهش میزان تبدیل می‌شود و این مساله به دلیل کاهش زمان اقامت و در نتیجه کاهش تماس متانول با فرمالدیید است. نتیجه‌های بررسی مدل‌ها نشان می‌دهد که بیشترین انحراف مربوط به مدل Shiau و El_Halwagi، بیشترین تطابق با داده‌ها را با 10 درصد خطا دارد. بنابراین می‌توان نتیجه گرفت که در واکنش تبدیل متانول به فرمالدیید جریان‌های برگشتی اهمیت کمتری دارند و این موضوع منطقی است زیرا قطر راکتور در مقایسه با طول آن کوچک است و این مساله بیانگر عدم وجود جریان‌های برگشتی است.

بهینه‌سازی پویای راکتور شکست حرارتی اتیلن دی کلرید

چکیده

در تحقیق حاضر بررسی مختصری روی روش‌های متفاوت بهینه‌سازی دینامیکی صورت گرفته است. در ادامه بهینه‌سازی دینامیکی راکتور شکست حرارتی اتیلن دی کلرید برای تولید وینیل کلرید (مونو پلیمر PVC ) مورد بررسی قرار گرفته است. راکتور حاضر یک راکتور جریان قالبی است. در این مساله به جای استفاده از توابع هدف وابسته به زمان از تابع وابسته به طول راکتور استفاده شده است. تابع هدف در اینجا در بیشینه‌سازی میزان تولید VCM در انتهای راکتور است. قیدهای موجود نیز معادله‌های دیفرانسیل حالت سیستم است. در نهایت با بررسی های صورت گرفته از روش پونتریاگین برای حل مساله بهره گرفته شده است. برای این کار در محیط برنامه‌نویس دلفی کدنویسی صورت گرفته است و پس از اجرای برنامه، پروفیل دمای بهینه راکتور و همچنین


دانلود با لینک مستقیم


تحقیق درمورد مدل‌سازی واکنش کاتالیستی اکسایش متانول به فرمالدیید در یک راکتور بستر سیال 13 ص

دانلود مقاله تولید بنزین مرغوب به روش تبدیل کاتالیستی

اختصاصی از ژیکو دانلود مقاله تولید بنزین مرغوب به روش تبدیل کاتالیستی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله تولید بنزین مرغوب به روش تبدیل کاتالیستی


دانلود مقاله تولید بنزین مرغوب به روش تبدیل کاتالیستی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صف102ه

 

فهرست مطالب

عنوان                                                                                        صفحه

چکیده 1

بخش اول. 2

پالایشگاه و فرآیندهای پالایش.. 2

1- روش های ساخت در پالایشگاه 3

2- نمک گیری از نفت خام 7

3- تقطیر. 8

4- فرآیندهای تصفیه و تخلیص فرآورده های نفتی. 9

5- رفرمینگ... 11

کاتالیزور : 15

شرح واحد رفرمینگ : 18

6-کراکینگ... 24

6-1-کراکینگ حرارتی. 24

6-2- فرآیند کراکینگ کاتالیزوری. 27

6-3- فرآیند هیدروکراکینگ... 28

هیدروپروسسینگ : 30

7- الکیلاسیون. 31

بخش دوم 32

واحد تبدیل کاتالیستی. 32

1- مقدمه 33

2- مبانی طراحی. 34

3- شرح عملیات.. 36

3-1- طبیعت عمل یونیفاینینگ... 38

3-1-2- شیمی یونیفاینینگ... 38

3-1-3- واکنش های نمونه یونیفاینر. 41

3-2- توضیح عملیا ت یونیفاینر. 42

3-2-1- خوراک برای راکتور. 43

3-2-2- قسمت گازگردشی – راکتور : 43

3-2-3- برج عریان کننده )  (Stripper: 46

3-3- ماهیت فرآیند پلاتفرمینگ... 50

3-3-2- شیمی پلاتفرمینگ... 50

هیدروکراکینگ... 51

ایزومریزاسیون. 52

حلقوی شدن: 53

گوگرد زدایی : 53

3-4- توضیح جریان عملیاتی پلاتفرمر. 54

4- متغیرهای عملیاتی. 64

4-1- قسمت یونیفاینر. 64

گردش هیدروژن: 65

4-2-  قسمت پلاتفرمر. 66

5- سیستم‌های کمکی. 71

5-2- احیاء کاتالیست یونیفاینر. 72

5-4- احیاء کاتالیست پلاتفرمر. 75

دستگاه تهیه هیدروژن با خلوص 5.99 درصد : 76

لوله‌های رابط کاستیک تازه و مصرف شده با پالایشگاه جنوبی : 76

پمپ کاستیک  2P-260: 77

5-5- سیستم یونیکور (مواد ضدخورندگی) Kontol 157. 77

6- عملیات مربوط به وسائل مختلف.. 79

6-1- پمپ ها 79

6-2- کمپرسورها 79

پیشنهاداتی برای تعمیر کمپرسور : 2C-251. 86

6-3- مبدل های حرارتی. 87

6-4-کوره ‌ها 87

مراجع. 90

 

             


چکیده

           با توجه به اینکه بنزین از اصلی ترین و اساسی ترین فرآورده های نفتی بوده و به عنوان پر مصرف ترین آنها نیز شناخته شده است , همواره در صنعت نفت سعی شده است با تولید هر چه بیشتر و بهتر این سوخت استراتژیک , به نیازهای بازار داخلی کشور پاسخ داده شود ؛ به ویژه در سالهای اخیر که بحث تحریم واردات  آن به  کشور  مورد توجه دشمنان قرار گفته است . از آنجا که مهندسین طراحی فرآیند ارتباط تنگاتنگی با صنایع نفت به ویژه این محصول        با ارزش دارند , می بایست با نحوه تولید آن آشنا شده و چگونگی دست یافتن به بنزین با کیفیت را مد نظر قرار دهند .

          

 

 

 

 

 

 

 

 

 

 

 

 

 

بخش اول   پالایشگاه و فرآیندهای پالایش

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1- روش های ساخت در پالایشگاه

 

          هدف از پالایش آن است که از نفت خام ردیف کاملی از  فراورده های نفتی که جوابگوی نیاز کمی وکیفی بازار مصرف باشند تولید شود .

          در این رابطه پالایشگر از تعدادی روش های فیزیکی جداسازی و روشهای شیمیایی تبدیل وتصفیه استفاده می کند که به هم پیوستگی این عملیات نمودار ساخت پالایشگاه را تشکیل می دهد.

          با توجه به نمودار ساخت ، پالایشگاهها به سه دسته تقسیم می شوند :

1) ساده یا انرژی ساز که انواع سوختها را تولید می کنند مثل سوخت مایع ،بنزین,نفت سفید وگازوئیل.

2) روغن ساز یا کامل که علاوه بر سوختها انواع روان کننده ها وپرافین ها و قیرها را تولید می کنند.

3) پتروشیمیایی که در کنار مواد سوختی مواد اولیه پتروشیمی نظیر اتیلن , پروپیلن , بوتن و آروماتیک      ها را از طریق کراکینگ با بخار ورفرمینگ تولید می کند .

         در طی عملیات پالایش , فرآیندهای پالایشی عبارتند از :                                         

1) فرآیندهای جداسازی     2) فرآیندهای تبدیل     

3) فرآیندهای پایانی           4) فرآیندهای حفاظت از محیط زیست

 

             1) فرآیندهای جداسازی خود به چند دسته تبدیل می شوند :

1- الف- تقطیر :

  • تقطیر اتمسفری ( تفکیک نفت خام به برشهای نفتی با فاصله جوش مشخص )
  • تقطیر خلأ ( جهت تقطیر باقیمانده تقطیر اتمسفری و تفکیک آن به برشهای نفتی )
  • تقطیر جانبی ( جهت جداسازی فراورده های خروجی از واحدهای تبدیل)

 1- ب- استخراج با حلال[1] :

  • آسفالت گیری ( جداسازی مواد روغنی به جا مانده خلأ )
  • استخراج آروماتیک های سنگین از روغن

      1- ج- جذب[2] : جهت جداسازی هیدروژن سولفید از جریان های گاز پالایشگاه

      1- د- جذب سطحی[3] : جهت تخلیص هیدروژن و تصفیه روغن ها

      1- ز- تبلور[4] : برای جداسازی موم ها از برش های روغنی

 

             2) فرآیندهای تبدیل که جهت بهبود مشخصات فرآورده های نفتی به کار می روند شامل واکنشهای زیر هستند :

 2- الف- واکنش های تجدید آرایش مولکولی شامل :

  1. رفرمینگ کاتالیزوری جهت بهبود عدد اُکتان بنزین سنگین
  2. ایزومری برای بهبود عدد اُکتان بنزین سبک

 2- ب- واکنشهای افزایشی شامل :

  1. الکیلاسیون  به منظور تولید بنزین با عدد اکتان بالا
  2. الگیلومری جهت تولید بنزین
  3. سنتز اترها که هدف آن تولید اترهای افزاینده عدد اوکتان است.

        همچنین انواع فرآیندهای تبدیل را می توان به صورت زیر تقسیم بندی نمود :

   - حرارتی مانند فرآیند کاهش گرانروی و ککینگ

   - کاتالیزوری مثل کراکینگ کاتالیزوری , هیدروکراکینگ و رفرمینگ با بخار

 

             3) فرآیندهای پایانی که شامل دو بخش زیر میباشند :

  1. تصفیه در حضور هیدروژن و هیدروژناسیون جهت حذف آلاینده های نفتی و افزایش ثبات آن ها .
  2. شیرین سازی جهت تبدیل یا حذف آلاینده های گوگردی موجود در مواد نفتی سبک .

             4) فرآیندهای حفاظت از محیط زیست عبارتند از :

  1. فرآورش گازهای – بازیافت گوگرد
  2. فرآورش گاز دودکش
  3. عملیات بر روی فاضلاب های پالایشگاهی
  4. Solvent Extraction
  5. Absorption
  6. 3.Adsorption
  7. 4.Crystallization

 
 
 
 

دانلود با لینک مستقیم


دانلود مقاله تولید بنزین مرغوب به روش تبدیل کاتالیستی

بررسی فعالیت کاتالیست های دو فلزی بر پایه-ZSM5در واکنش کاتالیستی متان به بنزن

اختصاصی از ژیکو بررسی فعالیت کاتالیست های دو فلزی بر پایه-ZSM5در واکنش کاتالیستی متان به بنزن دانلود با لینک مستقیم و پر سرعت .

بررسی فعالیت کاتالیست های دو فلزی بر پایه-ZSM5در واکنش کاتالیستی متان به بنزن


بررسی فعالیت کاتالیست های دو فلزی بر پایه-ZSM5در واکنش کاتالیستی متان به بنزن

فایل pdf

74صفح

 

گاز طبیعی، سوختی پاک و خوراکی مناسب برای صنایع شیمیایی است اما به دلیل ویژگی های خاص خود،

 

انتقال آن به سمت بازار مصرف دشوارتر و گرانتر از انتقال نفت خام است. این مسئله ناشی از مشکلاتی نظیر

 

نبود بازار امن و مناسب، هزینة بالای حمل و نقل و گران و پیچیده بودن تکنولوژی های انتقال نظیر LNG و

خطوط لوله است. از این رو تبدیل گاز طبیعی به مواد شیمیایی و جایگزین کردن صادرات این مواد به جای

صادرات گاز، علاوه بر اینکه بازار فروش مناسب و مطمئنی دارد، ارزش افزودة بیشتری را نصیب کشور

صادرکننده می کند و مشکلات صادرات گاز را نیز به همراه ندارد.

 


دانلود با لینک مستقیم


بررسی فعالیت کاتالیست های دو فلزی بر پایه-ZSM5در واکنش کاتالیستی متان به بنزن