ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کر

اختصاصی از ژیکو تحقیق درمورد ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کر دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کربنی

خلاصه:

پارامترهای ترمودینامیکی وابسته به اندازه نظیر انرژی آزاد گیبس، انتالبی و انرژی برای گذار از نانو فیلم Ni به ذرات کاتالیست Ni به منظور پیش درآمدی بر رشد نا لوله های کربنی بررسی شده است. در این تحقیق ما معاملات مشتق شده از دمای ذوب نانو ذرات وابسته به اندازه را بر اساس کارای قبلی خود بررسی کرده ایم. با استفاده از این یافته های ترمودینامیکی دریافت می شود که قطر ذرات Ni سه برابر بیشتر از ضخامت فیلم اصلی است. حداقل ضخامت فیلم لازم برای تبدیل نانو فیلم به نانو ذره از روی اندازه بحرانی و پایدار Ni تبدیل شده به نانو ذره Ni بدست می آید. پیش بینی های ما در توافق وبی با نتایج آزمایشگاهی است.

مقدمه:

در سالهای اخیر به خاطر کاربرد وسیع و خواص بی نظیر نانو لوله های کربنی توجه زیادی به مکانیزم ساخت و تشکیل نانو لوله های کربنی می شود، یکی از روشهای مرسوم برای تشکیل نانو لوله های کربنی تجزیه بخار شیمیایی(CVD) است که این ساختار گرانیتی بر روی سطح فلز حدودا در دمای زیر در تجزیه کربن که بصورت گازی است شکل می گیرد در این فرایند معمولا نانو ذرات کاتالیست ابتدا بر روی سطح بوسیله عملیات حرارتی فیلم نازک رسوب کرده، تشکیل می شوند که این نانو ذرات در جوانه زنی و تشکیل نانو لوله های کربنی شرکت می کنند. اندازه اولیه و تحرک کاتالیست می تواند بطور مشخصی بر تشکیل و پیکربندی نانو لوله های کربنی و دیگر نانو لوله ها یا نانو وایرها تاثیر بگذارد.

ترمودینامیک پایه برای تشکیل نانو ذرات کاتالیست توسط jiang et al بیان شده است که یک مدل برای پیش بینی شرایط یک بعدی برای تبدیل نانو فیلم Ni به نانو ذره Ni و سپس تشکیل نانو ذرات و پوشانده شدن با یک ردیف کربن پیشنهاد کرده است. اساس این مدل و بررسی ها بر تبعیت اندازه از نقطه ذوب نانو ذرات است پیش بینی می شود که شعاع ذرات تبدیل شده 5/1 برابر بزرگتر از ضخامت فیلم اولیه است. Liang et al ترمودینامیک تشکیل نانو ذرات را بوسیله فرایند جوانه زنی وابسته به شکل و حالت ماده(جامد، مایع یا گاز) منبع است که در گزارشات قبلی مورد بررسی قرار نگرفته اند.

در این کار پارامترهای ترمودینامیکی نظیر آنتالپی، انتروپی و انرژی آزاد گیبس برای مدل کردن اندازه بحرانی و پایدار نانو ذرات Ni در نظر گرفته شده اند. این پارامترهای ترمودینامیکی برای پیش بینی تشکیل نانو ذرات Ni از حمام مذاب و منبع فیلم نازک مورد استفاده قرار می گیرند.

در اینجا بررسی دمای ذوب به عنوان تابعی از اندازه بر مبنای کارهای قبلی در نظر گرفته شده است و نتایج با داده های آزمایشگاهی و گزارشات دیگر مقایسه شده اند.

2- مدل و بحث:

1-2: پارامترهای ترمودینامیکی نانو ذره و نانو فیلم:

تغییرات کلی انرژی آزاد(G) برای تشکیل یک جامد از مایع طی فرایند جوانه زنی شامل دو بخش انرژی حجمی و تغییرات انرژی سطحی است.

(1)

g: تغییرات انرژی آزاد گیبس مولی(وابسته به دما) برای تشکیل جامد از مایع

V2: حجم مولی A: مساحت : انرژی سطحی فصل مشترک جامد/مذاب

می توان گفت:

(2)

چون در اینجا ترمودینامیک حالت تعادل بررسی می شود Hm آنتالپی ذوب و Sm انتروپی انجماد(با علامت مخالف) است.

Hm , Sm بصورت زیر محاسبه می شوند:

انتروپی ذوب حداقل شامل سه بخش است: وضعیتی، ارتعاشی و الکتریکی. اگر نوع پیوند شیمیایی در گذار از حالت جامد/مذاب تغییر نکند جز الکتریکی آنقدر کوچک است که قابل چشم پوشی است، جزء وضعیتی هم برای کاتالیست های فلزی و آلی قابل چشم پوشی است. بنابراین روی هم رفته می توان گفت انتروپی و آنتالپی مولی ذوب برای کاتالیست های فلزی و آلی(Sm , Hm) بصورت زیر بیان می شود.

(3)

و

(4)

R: ثابت گازها Tm: دمای ذوب C: ثابت

Sm , Hm: به ترتیب آنتالپی و انتروپی ارتعاشی

کارهای مختلفی برای نشان دادن اینکه دمای ذوب تابعی از اندازه است انجام شده است. در کار قبلی ما بطور گسترده وابستگی دمای ذوب نانو ذرات به اندازه بصورت زیر بیان شد:


دانلود با لینک مستقیم


تحقیق درمورد ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کر

پروژه جامع و کامل درباره تاریخچه، دسته بندی و ساختار کاتالیست های زیگلر ناتا

اختصاصی از ژیکو پروژه جامع و کامل درباره تاریخچه، دسته بندی و ساختار کاتالیست های زیگلر ناتا دانلود با لینک مستقیم و پر سرعت .

پروژه جامع و کامل درباره تاریخچه، دسته بندی و ساختار کاتالیست های زیگلر ناتا


پروژه جامع و کامل درباره تاریخچه، دسته بندی و ساختار کاتالیست های زیگلر ناتا

فرمت فایل word: (لینک دانلود پایین صفحه) تعداد صفحات : 108 صفحه

 

 

 

 

مقدمه

پلی پروپیلن (PP) یکی از پرمصرف­ترین مواد پلیمری جهان است که مصرف آن روز به روز افزایش     می­یابد. میزان مصرف این پلیمر در سال 1970، 5/1 میلیون تن، در سال 1990 حدود 13 میلیون تن و در سال 1995، 19 میلیون تن بوده است و پیش بینی می شود که میزان مصرف این پلیمر در سال 2000 به حدود 25 میلیون تن برسد ]1[.

استفاده از کاتالیست­های زیگلر[1] ناتا[2]  تنها فرآیندی است که برای تولید پروپیلن و کوپلیمرهای آن نظیر پروپیلن-اتیلن بکار می­رود، زیرا پروپیلن را نمی­توان با پلیمریزاسیون رادیکال آزاد تولید کرد. واکنش پلیمریزاسیون می­تواند در چندین موضع فعال روی ذرات کاتالیست آغاز گردد و سرعت انجام واکنش در این مواضع با یکدیگر تفاوت دارد ]2،3[. به علت پیچیده بودن ماهیت این کاتالیست­ها و تعداد زیاد اجزای کاتالیست مورد استفاده عواملی چون نقش اجزای کاتالیست، ساختار مراکز فعال و مکانیسم فرآیند هنوز به درستی روشن نیست ]4،5[.

کاتالیست­های زیگلر- ناتا بواسطه دارا بودن مواضع فعال و ساختار متفاوت، تعداد زیاد اجزاء و همچنین ایجاد پدیده­های فیزیکی- شیمیایی نظیر محدودیت­های انتقال جرم در فصل مشترک گاز-مایع در راکتورهای دوغابی، خرد شدن کاتالیست در ابتدای پلیمریزاسیون، محدودیت انتقال منومر به مواضع فعال و راههای انتقال گرما، سینتیک پیچیده­ای دارند ]6[.

کاتالیست­های زیگلر-ناتا فرم­های متفاوتی دارند از قبیل کاتالیزورهای همگن ]2،3،7[ کاتالیزورهای شبه همگن ]6،8،9[ و کاتالیزورهای ناهمگن نگهداری شده و بدون نگهدارنده ]2،7[. در کاتالیزورهای نگهداری شده از یک پایه به منظور توزیع مناسب مواضع فعال استفاده می­گردد ]3،6[. فرمول کلی این کاتالیزورها TiCl4/الکترون دهنده داخلی (Di)/یک ترکیب Mg است. Mg(OEt)2 در طی فرایند ساخت کاتالیست به MgCl2 تبدیل می­شود و این ترکیب نقش بسیار مؤثری بعنوان نگهدارنده کاتالیست دارد ]10،11،13[. در سیستم این کاتالیستها علاوه بر الکترون دهنده داخلی در هنگام پلیمریزاسیون از الکترون دهنده خارجی نیز استفاده می­شود. این کاتالیستها در صورت استفاده از الکترون دهنده های مناسب می­توانند  PP  با شاخص تک آرایشی (I.I) بالا ایجاد کنند. نوع الکترون دهنده اهمیت خاصی در میزان محصول دهی و شاخص تک آرایشی کاتالیست دارد ]11،13،14[. در کاتالیزورهایی که ترکیب فنالات به عنوان الکترون دهنده داخلی در ساختار آنها بکار گرفته می­شود، از یک ترکیب سیلان به فرمول کلی نیز به عنوان الکترون دهنده خارجی استفاده می­شود. استفاده از این نوع الکترون دهنده های داخلی و خارجی در بسیاری از کارهای تحقیقاتی و صنعتی متداول است. البته نکته مهم این است که در سالهای اخیر از کاتالیزورهای همگن نوع متالوسن و متیل آلومینواکسین (MAO) برای پلیمریزاسیون پروپیلن استفاده شده و نتایج بسیار خوبی بدست آمده است، و این کاتالیزورها برای تهیه PP ایزوتاکتیک نیز نتایج خوبی را نشان داده­اند ]15،16[. همچنین استفاده از H2 بعنوان عامل انتقال زنجیر برای کالیزورهای زیگلر-ناتا درحدود سال 1955 متداول گشت ]17[.

 

  • تعریف کاتالیست­های زیگلر- ناتا

کاتالیست زیگلر- ناتا را می­توان به عنوان ترکیبی از یک فلز واسطه گروه­های IV تا VIII و یک ترکیب آلی-فلزی از یکی از فلزات گروه­های I تا III جدول تناوبی تعریف کرد. ترکیب حاصل از فلز واسطه به عنوان کاتالیست و ترکیب آلی-فلزی به عنوان کمک کاتالیست محسوب می­شود. اکثر جزء کاتالیست متشکل از هالیدها یا اکسی هالیدهای تیتانیوم، وانادیوم، کرم، مولیبدن و زیرکونیوم می­باشد. در برخی تحقیقات ترکیبات آهن و کبالت مؤثر شناخته شده­اند. برخی از لیگاندهای دیگر غیر از هالیدها یا اکسی هالیدها که مورد تحقیق قرار گرفته­اند شامل الکوکسی استیل استونیل، سیکلو پنتادی انیل و فنیل می­باشند. کمک کاتالیزورها معمولاً هیدریدها یا الکیل آریلهای فلزاتی همچون آلومینیم، روی، قلع، کادمیم، بریلیم و منیزیم هستند ]18[.

از میان الکیلها، هالیدها و آریل­های فلزی ترکیبات الکیل آلومینیم هم از نظر قیمت و هم از نظر کارایی مناسبترین شناخته شده­اند. ترکیبات آلی یا معدنی برای مقاصد خاص به این ترکیب دوتایی اولیه اضافه        می­شوند. مثلا افزایش الکترون دهنده­ها برای بهبود ایزوتاکتیسیتی، افزایش نگهدارنده برای افزایش فعالیت کاتالیست، هیدروژن برای کنترل جرم مولکولی و ....  به هر حال تعریف دوتایی فوق، امروزه شامل چندین ترکیب آلی و معدنی است ]19[. البته همه این ترکیبات کاتالیزورهای فعالی را ایجاد نمی­کنند، بدین معنی که هر ترکیب خاص ممکن است فقط برای منومر خاصی فعال باشد ]2[. تا کنون مهمترین سیستم­های زیگلر-ناتا که به طور کامل مطالعه شده­اند، مخلوط­هایی از ترکیبات تیتانیوم تری هالیدها و تترا هالیدها باتری الکیل آلومینیم می­باشند ]18[.

تعریف دیگری نیز برای این کاتالیست­ها ارائه شده است و آن عبارت پلیمریزاسیون کئوردینه­ای است. این تعریف بیشتر بر جنبه های مکانیسمی فرایند پلیمریزاسیون با استفاده از کاتالیست­ها دارد، زیرا طی فرایند پلیمریزاسیون منومر با فلز واسطه کئوردینه می­شود ]19[.

 

  • تاریخچه

تاریخچه مختصری از توسعه کاتالیست­های زیگلر- ناتا به شرح زیر می­باشد:

  • پلیمریزاسیون الفینها به سال 1898 باز می­گردد، یعنی وقتی که Van Pechman پلی اتیلن را از دی آزومتان تهیه کرد ]20[.
  • در سال 1930 Friedrich و Marvel ]21[ اتیلن را به پلی اتیلن با جرم مولکولی کم در حضور الکیل­های لیتیم تبدیل نمودند.
  • کمپانی ICI در سال 1935 در فشار بالا (atm 3000-1000) و دمای بالا (°C 300-100) در حضور یک آغازگر رادیکالی محصول سفید رنگ واکسی شکل بدست آورد که بعداً پلی اتیلن نامیده شد.
  • برای اولین بار در سال 1950 یک جامد خطی سر به دم PP که خواص مشخصه ساختمانهای ایزوتاکتیک را نشان می داد بوسیله شیمیدان آمریکایی کارموندی[3] بدست آمد ]22[.
  • تحقیقات زیگلر در زمینه ترکیبات آلی-فلزی و کاربرد آنها برای پلیمریزاسیون اتیلن نتایج مهیجی در سال 1953 بدست آورده در همین سال کمپانی پترولیوم فیلیپس پلیمریزاسیون اتیلن در فشار کم و با استفاده از اکسید کروم نگهداری شده روی سیلیکا یا آلومینا را انجام داد ]24،23[.
  • کشف زیگلر توسط پروفسور ناتا برای دیگر α-الفینها در سال 1954 توسعه یافت ]25[.
  • هم کاتالیست زیگلر- ناتا و هم کاتالیستهای فیلیپس در سالهای 1957-1956 به مرحله تولید پلیمر در مقیاس تجاری رسیدند.
  • در مورد کاتالیست­های زیگلر- ناتا اولین توسعه قابل توجه در اوایل دهه 1960 بدست آمد یعنی وقتی که از ترکیبات منیزیم فعال مانند منیزیم هیدروکسی کلرید ]24[ و منیزیم هیدروکسی سولفات ]26[ به عنوان نگهدارنده استفاده شد.
  • در اواخر دهه 1960 و اوایل دهه 1970 با بکار بردن مواد تنظیم کننده نظم فضایی چون آمین­ها، اترها، الکل­ها و آب تولید پروپیلن ایزوتاکتیک ممکن گردید، هر چند استفاده از این مواد باعث کاهش فعالیت بیش از حد این کاتالیست گشت.
  • برای اولین بار کمپانی Montedison در سال 1978 موفق به ساخت کاتالیست نگهداری شده­ای با فعالیت بالا همراه با ایزوتاکتیسیتی بالا شد ]27[. بدین ترتیب آنها در اثر واکنش TiCl4 با MgCl2 آسیاب شده در حضور بنزوات اتیل و الکیل آلومینیم همراه با یک الکترون دهنده از ترکیبات آروماتیک کربوکسیلیک اسیدی مانند بنزوات اتیل، اتیل تولوئات و ... موفق به تهیه کاتالیزوری برای تهیه پروپیلن با ایزوتاکتیسیتی بالاتر از 90% و محصول دهی بیش از KgPP/gTi 50 شدند ]28[.
  • در دهه 1980 روند پیشرفت کاتالیست­ها با بکارگیری ترکیبات فتالات مانند دی n-بوتیل فتالات، دی ایزو بوتیل فتالات، دی اکتیل فتالات و ... به عنوان الکترون دهنده داخلی و الکوکسی سیلان یا آریل اکسی سیلان به عنوان الکترون دهنده خارجی ساخته شدند که هم محصول دهی و هم ایزوتاکتیسیتی بالایی دارند ]29،31[.
    • دسته بندی کاتالیست­های زیگلر- ناتا

بلافاصله پس از کشف کاتالیست­های زیگلر- ناتا این کاتالیست­ها موضوع تحقیقات بسیاری از مراکز علمی و صنعتی در سطح جهان گشت. کاتالیست­های زیادی با نگهدارنده، همراه با اصلاح کننده­های متفاوت ساخته شد. کمپانی­های متفاوت در سطح جهان از اصلاح کننده­های متفاوت و اختصاصی استفاده می کنند. بطور کلی کاتالیست­های ساخته شده را می­توان به 6 نسل تقسیم کرد، ولی در یک تقسیم بندی کلی تر کاتالیست­ها به چهار گروه عمده تقسیم می­شوند. شکل 1-1 جزئیات بیشتری از این تقسیم بندی را نشان می­دهد.

1-4-1 کاتالیست­های نسل اول

کاتالیست­های TiCl3/AlEt2Cl که در فرایندهای صنعتی اولیه برای تهیه PP مورد استفاده قرار گرفت در عمل از فضا ویژگی و بازدهی کمی برخوردار بود. شاخص ایزوتاکتیسیتی (I.I) حدود 90% بود. در نتیجه حذف باقیمانده کاتالیست و جداسازی جزء اتاکتیک پلیمر از ضروریات این فرایند بود ]34[. در اثر تحقیقات انجام شده توسط گروه ناتا و مراکز صنعتی، خیلی زود مشخص شد که آسیاب نمودن طولانی مدت TiCl3 احیا شده در حضور ترکیب Al یا مخلوط TiCl3 و AlCl3 کاتالیستی خیلی فعالتر از TiCl3 خالص بدست می­آید ]32[. کاتالیست­هایی از این نوع را AA-TiCl3 می­نامند (که در آن AA نشانگر Al احیا شده و فعال می­باشد).


دانلود با لینک مستقیم


پروژه جامع و کامل درباره تاریخچه، دسته بندی و ساختار کاتالیست های زیگلر ناتا

پروژه سنتزمستقیم دی متیل اتر از گاز سنتز روی کاتالیست های ترکیبی؛ بهینه سازی شرایط عملیاتی. doc

اختصاصی از ژیکو پروژه سنتزمستقیم دی متیل اتر از گاز سنتز روی کاتالیست های ترکیبی؛ بهینه سازی شرایط عملیاتی. doc دانلود با لینک مستقیم و پر سرعت .

پروژه سنتزمستقیم دی متیل اتر از گاز سنتز روی کاتالیست های ترکیبی؛ بهینه سازی شرایط عملیاتی. doc


پروژه سنتزمستقیم دی متیل اتر از گاز سنتز روی کاتالیست های ترکیبی؛ بهینه سازی شرایط عملیاتی. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 132صفحه

 

مقدمه:

به لحاظ تاریخی کشف دی متیل اتر که ساده‏ترین گونه از خانواده اترها است به سال 1865  میلادی بر می گردد که این کشف توسط الکساندر ویلیامسون  به ثبت رسیده است . این  ماده دارای  ساختار ساده به شکل دو گروه متیل متصل به اکسیژن است  ( CH3-O-CH3) . این ماده عموماً از جایگزینی یک گروه متیل به جای هیدورژن متصل به اکسیژن در متانول (CH3OH)، به دست می‏آید. از این ترکیب شیمیایی تا امروز استفاده مهمی نشده و هنوز بصورت جدی وارد عرصة صنعت و تجارت نگردیده است. حال آنکه با مشخص شدن خواص فیزیکی و شیمیایی مطلوب و جالب توجه این ماده محققین و متخصصان زیادی به سمت و سوی تحقیق پیرامون تولید و کاربرد این ترکیب با ارزش کشیده شده اند. در 30 سال گذشته تحقیقات زیادی توسط اشخاص و شرکتهای بزرگ در سطح جهانی در رابطه با سنتز DME   صورت گرفته است. اما هنوز این تحقیقات به پایان نرسیده و هر روزه شاهد ارائه شدن نظری جدید و بهتر در این زمینه هستیم.

تولید اولیة این ماده به روش آبگیری از متانول انجام گردیده است و تا دهه پیش استفادة مهم و چشمگیری از آن در صنایع وجود نداشت . با رشد و افزایش علم و دانش شیمی- مهندسی شیمی به تدریج دی متیل اتر  (DME)  وارد عرصة صنعت شده و به عنوان جایگزینی برای عامل پیشران در اسپری ها و لوازم آرایشی – بهداشتی به کار برده شد. همچنین این ترکیب یک حدواسط با ارزش برای تولید مواد شیمیایی مختلف از جمله دی متیل سولفات که به عنوان کود شیمیایی در صنایع کشاورزی استفاده می‏شود، می باشد. مضافاً DME بصورت جایگزین CFC  رخه های سرماساز، سوختهای 

خانگی مانند LPG   و جایگزین برای سوخت دیزل نیز مورد استفاده قرار گرفته است. اما به هر حال این ترکیب در عرصة تجارت تاکنون موفقیت چندانی نداشته که مهمترین عامل آن قیمت نهایی تولید این ماده در مقایسه با انتخاب های رقیب است]1[ .

مهمترین دلایلی که باعث مطرح شدن DME شده است عبارتست از :

قیمت بسیار پایین گاز طبیعی و وفور آن بخصوص در منطقة خاورمیانه بعنوان یک منبع عظیم انرژی و از طرفی مشکلات نقل و انتقال گاز طبیعی و ذخیره سازی آن و دور بودن بازارهای مصرف آن از مخازن موجود.

افزایش محدودیت‏های زیست محیطی در مورد آلودگی های حاصل از سوختهای فسیلی و تلاش برای جایگزینی سوختهای نو.

حصول نتایج عالی از تستهای انجام شده برای جایگزینی DME با سوخت‏های دیزل متداول و LPG

- گسترش روزافزون دانش و تجربه در زمینه تبدیل مستقیم گاز سنتز حاصل از گاز طبیعی به DME با استفاده از روش مستقیم تبدیل گاز سنتز به DME  کاهش قابل توجهی در هزینه و لذا قیمت تمام شده DME حاصل خواهد شد که زمینه ساز طرح مقوله ای جدید به نام سنتز مستقیم DME  از گاز سنتز تحت عنوانSTD   گردیده است. در حال حاضر که بیش از 20 سال از آغاز بحث جدی در این زمینه می‏گذرد، شرکتهای مختلفی در حال بررسی نهایی جهت تدوین دانش فنی برای احداث نخستین واحدهای تجاری فرآیند تبدیل مستقیم گاز سنتز به DME می‏باشند.

کشور ایران دارای حداقل7/22 تریلیون مترمکعب منابع ثبت شده گاز طبیعی، یعنی بیش از 18% منابع به ثبت رسیدة جهان و 44% منابع خاورمیانه می باشد. با وجود این منابع گازی (مقام دوم جهان) و با اتکا به دانش و تجربه نسبتا‏ً بالای متخصصین کشور که در زمینه فرآیندهای گاز طبیعی و تبدیل گاز طبیعی به مواد با ارزش افزوده بالاتر و قابل حمل و نقل مطالعات و تحقیقات قابل توجه و حجیمی در این زمینه در سطح صنایع پتروشیمی آغاز گردیده است.

 

فهرست مطالب:

فصل اول  ؛  مطالــعات کتابخــانه ای و طرح برنامة مرحلة عملیاتی

مقدمه ای بر دی متیل اتر و کلیات آن

گاز طبیــــعی

گاز سنتز

دی متیل اتر

کاربردهایDME

1-2-1) DME بعنوان پیشرانه در اسپری ها

1-2-2) DME بعنوان جایگزین LPG یا سوخت خانگی

1-2-3) DME بعنوان جایگزین سوخت دیزل یا حمل و نقل

1-2-4) DME بعنوان مکمل سوخت

1-2-5) DME بعنوان سوخت نیروگاهی

روشهای تولیدDME

1-3-1) سنتز غیر مستقیم یا دو مرحله ای

1-3-2) سنتز مستقیم(تک مرحله ای) DME از گاز سنتز

1-3-3) سنتز همزمان متانول و دی متیل اتر

تهیه کاتالیستهای سنتز مستقیم DME

1-4-1) تلقیح مرطوب

1-4-2) رسوب همزمان

1-4-1) اختلاط فیزیکی

انواع راکتورها و میکروراکتورهای مورد استفاده در سنتز DME

1-5-1) میکروراکتورها

1-5-1-1) میکروراکتور با بستر ثابت

1-5-1-2) میکروراکتور دوغابی همزن دار

1-5-2) انواع راکتورهای قابل استفاده در سنتز DME

1-5-2-1) راکتورهای بستر ثابت

1-5-2-2) راکتورهای بستر سیال

1-5-2-3) راکتورهای بستر دوغابی

ترمودینامیک واکنشهای سنتز DME

1-6-1) تعادل در سنتز متانول از گاز سنتز

1-6-2) تعادل واکنش شیفت آب-گاز

1-6-3) تعادل سنتز دی متیل اتر

سینتیک و مکانیسم واکنشهای سنتز مستقیم DME

نتیجه گیری؛ چگونگی تأثیر پارامترهای مختلف روی سنتز DME

1-8-1) نوع فرآیند و نحوة سنتز DME

1-8-2) انواع کاتالیستها و اثرات آنها

1-8-2-1) اثر جنس مواد سازندة کاتالیست

1-8-2-2) اثر روش تهیة کاتالیست

1-8-2-3) اثر تغییر نسبت کاتالیست متانول به کاتالیست آبگیر

1-8-2-4) اثر شکل و اندازة ذرات کاتالیست

1-8-3) اثرات تغییر دمای عملیاتی فرآیند

1-8-4) اثرات تغییر فشار عملیاتی فرآیند

1-8-5) اثرات تغییر شرایط خوراک فرآیند

1-8-5-1) اثر تغییر دبی (سرعت فضایی) خوراک

1-8-5-2) اثرات تغییر نسبت هیدروژن به منوکسید کربن در خوراک

1-8-6) نتیجه گیری

طرح برنامه برای بهینه سازی پارامترهای عملیاتی سنتز مستقیم DME

1-9-1) اهداف و معیارها

1-9-2) مرحلة عملیاتی و طرح آزمایشات

فصل دوم ؛ تجهیزات مورد استفاده و چگونگی اجرای آزمایشها و گرفتن نتایج

2-1) شرح مجموعة تست راکتوری و متعلقات آن

2-1-1) مجموعة سیستم احیای کاتالیست

2-1-2) مجموعة فرآیندی

2-1-2-1) قبل از واکنش

2-1-2-2) مرحلة انجام واکنش

2-1-2-3) بعد از واکنش

2-1-3) سیستم آنالیز محصولات و خوراک

2-1-4) سیستم های کنترلی

2-2) چگونگی انجام آزمایشات و ثبت نتایج

2-2-1) تهیة کاتالیست

2-2-2) شناسایی کاتالیست

2-2-3) آماده سازی سیستم احیا و احیای کاتالیست

2-2-4) آماده سازی سیستم تست راکتوری و آنالیز محصول

2-2-5) انتقال حلال و کاتالیست به راکتور

2-2-6) اجرای فرآیند

2-2-7) آنالیز محصول و ثبت نتایج

فصل سوم ؛ گزارش انجام آزمایشات ، ثبت و پردازش نتایج حاصل

3-1) فاز اول؛ انتخاب دور مناسب برای همزن

3-1-1) هدف و فلسفة انجام

3-1-2) انجام آزمایش

3-1-3) نتیجه گیری

3-2) فاز دوم؛ انتخاب جنس مناسب و بهینه برای کاتالیست ترکیبی

3-2-1) هدف و فلسفة انجام

3-2-2) انجام آزمایشات و ثبت نتایج

3-2-3) محاسبات و پردازش اطلاعات

3-2-4) تحلیل داده ها توسط نرم افزار Minitab و بهینه سازی

3-2-5) جداول و نمودارها

3-2-6) بحث و نتیجه گیری

3-3) فاز سوم؛ تعیین شرایط عملیاتی بهینه برای کاتالیست منتخب فاز 2

3-3-1) هدف و فلسفة انجام

3-3-2) انجام آزمایشات و ثبت نتایج

3-3-3) محاسبات و پردازش اطلاعات

3-3-4) تحلیل داده ها توسط نرم افزار Minitab و بهینه سازی

3-3-5) جداول و نمودارها

3-3-6) بحث و نتیجه گیری

فصل چهارم ؛ بحث و نتیجه گیری

4-1) بحث روی نتایج فاز 2

4-2) بحث روی نتایج فاز 3

4-3) جمع بندی نتایج

4-4) ارائة پیشنهاد برای کارهای آینده

 

فهرست اشکال:

شکل 1-1: مقایسه بین میزان پاکیزگی و عدد ستان DME و چند سوخت دیگر

شکل 1-2: نتایج تست احتراق JIS برای تعیین تناسب دستگاههای احتراق گاز برای DME

شکل 1-3: نتایج تست احتراق سوخت DME و دیزل در موتورهای دیزلی

شکل 1-4: نمودار جریان شماتیک فرآیند تولید DME از روش آبگیری از متانول

شکل 1-5 : نمودار جریان شماتیک فرآیند سنتز مستقیم DME

شکل 1-6: نمودار جریان شماتیک روش تولید همزمانDME/MeOH

شکل 1-7: شمای کلی سیستم تست راکتوری با راکتور بستر ثابت برای فرآیند سنتز DME از روش STD

شکل 1-8: نمودار جریان شماتیک سیستم راکتور دوغابی همزن دار

شکل 1-9: تبدیل تعادلی گاز سنتز (H2:CO=3:1) به متانول

شکل 2-1 : نمودار جریان شماتیک مجموعة تست راکتوری

شکل 2-2 : نمای شماتیک ظرف احیای کاتالیست

شکل 2-3 : نمای شماتیک مجموعة سیستم احیای کاتالیست

شکل 2-4 : نمای شماتیک نمودار جریان فرآیند، قبل از واکنش

شکل 2-5 : نمای شماتیک راکتور و متعلقات آن

شکل 2-6 : نمای شماتیک نمودار جریان فرآیند، بعد از واکنش

شکل 2-7 : نمونة فرم ثبت گزارش مرحلة احیا

شکل 2-8 : نمونة فرم ثبت گزارش مراحل آماده سازی سیستم و انتقال کاتالیست

شکل 2-9 : نمونة فرم ثبت گزارش مرحلة اجرای فرآیند و نمونه گیری

شکل 2-10 : نمونة کروماتوگرام آنالیز نمونه

شکل 2-11 : نمونة گزارش آنالیز نمونه

شکل 2-12 : نمونة فرم ثبت نتایج آنالیز نمونه ها

شکل 3-1: الگوهای شکست اشعه x ، XRD، برای کاتالیستهای سازنده

شکل 3-2: الگوهای شکست اشعه x ، XRD، برای کاتالیستهای ترکیبی

شکل 3-3 : میزان تبدیل CO در هر گذر بر حسب جنس کاتالیست

شکل 3-4 : گزینش پذیری DME در محصولات کربن دار بر حسب جنس کاتالیست

شکل 3-5 : بازدة تولید DME  بر حسب جنس کاتالیست

شکل 3-6 : گزینش پذیری محصولات اکسیژن دار بر حسب جنس کاتالیست

شکل 3-7 : نرخ تولید DME به ازای واحد وزن کاتالیست بر حسب جنس کاتالیست

شکل 3-8 : متوسط میزان تبدیل CO در هر گذر بر حسب جنس کاتالیست سنتز متانول

شکل 3-9 : متوسط گزینش پذیری DME در محصولات کربن دار بر حسب جنس کاتالیست سنتز متانول

شکل 3-10 : متوسط بازدة تولید DME بر حسب جنس کاتالیست سنتز متانول

شکل 3-11 : متوسط گزینش پذیری محصولات اکسیژن دار بر حسب جنس کاتالیست سنتز متانول

شکل 3-12 : متوسط نرخ تولید DME به ازای واحد وزن کاتالیست بر حسب جنس کاتالیست سنتز متانول

شکل 3-13 : متوسط تبدیلCO در هرگذر بر حسب جنس کاتالیست آبگیر

شکل 3-14 : متوسط گزینش پذیری DME در محصولات کربن دار بر حسب جنس کاتالیست آبگیر

شکل 3-15 : متوسط بازدة تولید DME بر حسب جنس کاتالیست آبگیر

شکل 3-16 : متوسط گزینش پذیری محصولات اکسیژن دار بر حسب جنس کاتالیست آبگیر

شکل 3-17 : متوسط نرخ تولید DME به ازای واحد وزن کاتالیست بر حسب جنس کاتالیست آبگیر

شکل 3-18: الگوهای شکست اشعه x ، XRD، برای کاتالیستهای سازنده و کاتالیست ترکیبی

شکل 3-19 : تغییرات تبدیلCO در هرگذر بر حسب دما و فشار

شکل 3-20 : تغییرات تبدیلCO در هرگذر بر حسب نسبت H2/CO خوراک و نسبت بار کاتالیستی

شکل 3-21 : تغییرات گزینش پذیری DME در محصولات کربن دار  بر حسب دما و فشار

شکل 3-22 : تغییرات گزینش پذیری DME در محصولات کربن دار بر حسب نسبت H2/CO خوراک و نسبت بار کاتالیستی

شکل 3-23 : تغییرات بازدة تولید DME بر حسب دما و فشار

شکل 3-24 : تغییرات بازدة تولید DME بر حسب نسبت H2/CO خوراک و نسبت بار کاتالیستی

شکل 3-25 : تغییرات گزینش پذیری محصولات اکسیژن دار بر حسب دما و فشار

شکل 3-26 : تغییرات گزینش پذیری محصولات اکسیژن دار بر حسب نسبت H2/CO خوراک و نسبت بار کاتالیستی

شکل 3-27 : تغییرات نرخ تولید DME به ازای واحد جرم کاتالیست بر حسب دما و فشار

شکل 3-28 : تغییرات نرخ تولید DME به ازای واحد جرم کاتالیست بر حسب نسبت H2/CO خوراک و نسبت بار کاتالیستی

شکل 3-29 : متوسط تغییرات تبدیلCO در هرگذر بر حسب فشار

شکل 3-30 : متوسط تغییرات تبدیلCO در هرگذر بر حسب دما

 

شکل 3-31 : متوسط تغییرات تبدیلCO در هرگذر بر حسب نسبت H2/CO خوراک

شکل 3-32 : متوسط تغییرات تبدیلCO در هرگذر بر حسب نسبت بار کاتالیستی

شکل 3-33 : متوسط تغییرات گزینش پذیری DME در محصولات کربن دار  بر حسب فشار

شکل 3-34 : متوسط تغییرات گزینش پذیری DME در محصولات کربن دار  بر حسب دما

شکل 3-35 : متوسط تغییرات گزینش پذیری DME در محصولات کربن دار  بر حسب نسبت H2/CO خوراک

شکل 3-36 : متوسط تغییرات گزینش پذیری DME در محصولات کربن دار  بر حسب نسبت بار کاتالیستی

شکل 3-37 : متوسط تغییرات بازدة تولید DME بر حسب فشار

شکل 3-38 : متوسط تغییرات بازدة تولید DME بر حسب دما

شکل 3-39 : متوسط تغییرات بازدة تولید DME بر حسب نسبت H2/CO خوراک

شکل 3-40 : متوسط تغییرات بازدة تولید DME بر حسب نسبت بار کاتالیستی

شکل 3-41 : متوسط تغییرات گزینش پذیری محصولات اکسیژن دار  بر حسب فشار

شکل 3-42 : متوسط تغییرات گزینش پذیری محصولات اکسیژن دار  بر حسب دما

شکل 3-43 : متوسط تغییرات گزینش پذیری محصولات اکسیژن دار  بر حسب نسبت H2/CO خوراک

شکل 3-44 : متوسط تغییرات گزینش پذیری محصولات اکسیژن دار  بر حسب نسبت بار کاتالیستی

شکل 3-45 : متوسط تغییرات گزینش پذیری DME در محصولات اکسیژن دار  بر حسب فشار

شکل 3-46 : متوسط تغییرات گزینش پذیری DME در محصولات اکسیژن دار  بر حسب دما

شکل 3-47 : متوسط تغییرات گزینش پذیری DME در محصولات اکسیژن دار  بر حسب نسبت H2/CO خوراک

شکل 3-48 : متوسط تغییرات گزینش پذیری DME در محصولات اکسیژن دار  بر حسب نسبت بار کاتالیستی

شکل 3-49 : متوسط تغییرات نرخ تولید DME به ازای واحد جرم کاتالیست بر حسب فشار

شکل 3-50 : متوسط تغییرات نرخ تولید DME به ازای واحد جرم کاتالیست بر حسب دما

شکل 3-51 : متوسط تغییرات نرخ تولید DME به ازای واحد جرم کاتالیست بر حسب نسبت H2/CO خوراک

شکل 3-52 : متوسط تغییرات نرخ تولید DME به ازای واحد جرم کاتالیست بر حسب نسبت بار کاتالیستی

شکل 4-1 : پنجرة بخش بهینه سازی نرم افزار Minitab

 

فهرست جداول:

جدول1-1: محدوده نسبت H2/CO برای گازسنتز حاصل از گاز طبیعی به روشهای مختلف

جدول 1-2: مقایسه خواص فیزیکی و عدد ستان سوختهای مختلف

جدول 1-3: خواص فیزیکی دی متیل اتر

جدول 1-4 : مقایسة انواع سوختهای جانشین برای سوخت دیزل

جدول1-5: ظرفیت تولید جهانیDME در سال2002

جدول1-6 :کاربردهای DME اعلام شده از سوی کمپانی Dupont

جدول 1-7: مقایسه خصوصیات فیزیکیDME و LPG

جدول 1-8: واکنشهای مهم در تولید DME

جدول 1-9: ترکیبهای کاتالیستی در مرحلة 2

جدول 1-10 : برنامة اجرایی مرحلة 3

جدول 3-1 : انواع ترکیب های تهیه شده از کاتالیستهای صنعتی موجود و برنامة عملیاتی فاز 2

جدول3-2 : عناصر موجود در کاتالیستها، آنالیز به روشXRF

جدول 3-3 : مساحت سطح کاتالیستها، آنالیز به روش BET

جدول3-4 :  تبدیل CO در هر گذر، بازدة تولید DME و گزینش پذیری ها برای9 نمونه کاتالیست

جدول3-5 :  سرعت تولید و مصرف اجزا به ازای واحد وزن کاتالیست، برای 9 نمونه کاتالیست

جدول3-6: برنامة عملیاتی فاز سوم

جدول 3-7 : سطح ویژة کاتالیستهای فاز 3 ، آنالیز به روش BET

جدول 3-8 : عناصر موجود در کاتالیستها KMT و H-MFI-90 ، آنالیز به روش XRF (کمی)

جدول3-9: تبدیل CO در هر گذر، بازدة تولید DME و گزینش پذیری ها برای9  آزمایش فاز3

جدول3-10 :  سرعت تولید و مصرف اجزا به ازای واحد وزن کاتالیست، برای 9 اجرای فاز 3

 

منابع ومأخذ:

[1] Manfred Muller and Ute Hubsch,Ulmann’s Encyclopedia of Industrial Chemistry, Sixth Edition,2002

[2] H.E. Curry-Hyde and R.F. Howe (Editors), Natural Gas Conversion II @ 1994, Elsevier

Science B. V . All Right Reserred

[3] Venkat K. Venkataraman et al. U. S . Department of Energy, Federal Energy Technology

Center, report “Natural Gas to Liquids: An Overview”

[4] K. Aasberg-petersen, J. R. Rostrup-Nielsen and et al. Applied Catalysis A:General 221(2001) 379-387

[5] Koichi Kato, Japan Energy Research Center Co. Report “Fuels Of the Future”, Hydrocarbon Asia, July/August 2002

[6] Alexander Rojey, Institute Francies Petrole (LFP), Report “Natural Gas Fundamentals”

[7] Ahmad Rahgozar, Report “Iran’s Natural Gas Potentials”, IPF 2001, Tehran

[8] Svend Erik Nielsen, Ammonia Technology Supervior, Haldor Topsoe A/S, Report “Natural Gas to Petrochemicals” and “Conversion Process of natural gas to Ethylene”, IPF 2001 Tehran

“ [9] Steam Reforming Catalyst”, Synetix, Company Brochure, ICI Group, 705W/800/0/REF

[10] D. L. Trimm, “Catalyst for the Control of Coking During of Steam Reforming”, Catalysis Today 49(1999)3-10

[11] T. Palm, c. Buch, B. Kruse and E. Sauar, “Green heat and power” Published by Bellona Foundation 1999, :www. Bellona.no: Report 3:1999

[12] H. S. Bengaard and et al. Journal of Catalysis 209(2002) 365-384

[13] S. P. Golf, S. I. Wang, “Syngas Production by Reforming” , Chemical Engineering Progress, August 1987

[14] Jens R. Rostrup-Nielsen, Catalysis Today 71 (2002) 243-247

[15] T. S. Christensen and I. I. Primdhal, Report “Improve Syngas Production Using Autothermal Reforming” Hydrocarbon Processing, March 1994

[16] S. Wang and G. Q. (Max) Lu, Industrial Engineering Chemical Research 38 (1999) 2615-2625

[17] H. H. Gunardson and J. M. Abrardo, “Product CO-Rich Synthesis Gas”, Hydrocarbon Processing, April 1999

[18] K. Heitnes, S. Lindberg, O. A. Rokstad, A. Holmen, Catalysis Today 24 (1995)211-216

[19] W.Feng. F. Carl Knopf, and Kerry M. Dooley, Energy & Fuels, An American Chemical Society Journal, Vol. 8, No. 4, July/August 1994

[20] K. Tomishige, O. Yamazaki, Y. chen, Catalysis today 45 (1998) 35-39

[21] Hengyong Xu and et al. Journal of Molecular Catalysis A: Chemical 147 (1999) 41-46

[22] D. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson, “Syngas Production for Gas-to-liquids Applications: Technologies, Issues and Outlook” , American Chemical Society Milennium Symposium, San Francisco, CA, March 26-31,2000

[23] Website for Sasol and BP Amoco Companies (http://www.sasol.com, http://www.bpgasseconomy.com)

[24] Jens Perregaard and et al., Haldor Topsoe A/s, DME Seminar for NPC, November 2002

[25] Website for Haldor Topsoe A/S Company) http://www.haldortopsoe.com (

[26] Website for NKK Corporation) http://eee.nkk.co.jp(

[27] Website of various Companies, About DME Projects

[28] Lucia G. Apple and and et al., LACAT/ Institute Nacional de Technologia, Av. Venezuela, 82/507 , Rio de Janeiro , Brazil Puc-Rio de Jaaneiro, Brazil

[29] Ki-Won Jun , Hye- Soon lee et al., Bull. Korean Chem. Soc. 24 (2003) 106-108

[30] T. Takeguchi, K. Yanagisawa, T. Inui, M. Inoue, Applied Catalysis A: General 192(2000) 201-209

[31] Website for International DME Association (IDE) ; ( http://www.aboutdme.org )

[32] Topical Report “Market Outlook for Dimethyl Ether (DME))”, Air Products and Chemicals, Inc., Allentown, Pennsylvania, 2002, Under Cooperative agreement no. :DE-FC22-92PC90543

[33] D. Romani, C. Scozzesi, H. Holm-larsen, and L. Piovesan, “Large-Scale Production of Fuel DME fram Natural Gas”, The Second International Oil, Gas & Petrochemical Congress, Tehran 16-18 May 2000

[34] Enzo Caetani and Helge Holm-Larsen, “Marketability of dimethyl Ether

دانلود با لینک مستقیم


پروژه سنتزمستقیم دی متیل اتر از گاز سنتز روی کاتالیست های ترکیبی؛ بهینه سازی شرایط عملیاتی. doc

دانلود تحقیق مطالعه پلیمریزاسیون پروپیلن با استفاده از کاتالیست زیگلر- ناتا

اختصاصی از ژیکو دانلود تحقیق مطالعه پلیمریزاسیون پروپیلن با استفاده از کاتالیست زیگلر- ناتا دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق مطالعه پلیمریزاسیون پروپیلن با استفاده از کاتالیست زیگلر- ناتا


دانلود تحقیق مطالعه پلیمریزاسیون پروپیلن با استفاده از کاتالیست زیگلر- ناتا

پلی پروپیلن (PP) یکی از پرمصرف­ترین مواد پلیمری جهان است که مصرف آن روز به روز افزایش     می­یابد. میزان مصرف این پلیمر در سال 1970، 5/1 میلیون تن، در سال 1990 حدود 13 میلیون تن و در سال 1995، 19 میلیون تن بوده است و پیش بینی می شود که میزان مصرف این پلیمر در سال 2000 به حدود 25 میلیون تن برسد ]1[.

استفاده از کاتالیست­های زیگلر[1] – ناتا[2]  تنها فرآیندی است که برای تولید پروپیلن و کوپلیمرهای آن نظیر پروپیلن-اتیلن بکار می­رود، زیرا پروپیلن را نمی­توان با پلیمریزاسیون رادیکال آزاد تولید کرد. واکنش پلیمریزاسیون می­تواند در چندین موضع فعال روی ذرات کاتالیست آغاز گردد و سرعت انجام واکنش در این مواضع با یکدیگر تفاوت دارد ]2،3[. به علت پیچیده بودن ماهیت این کاتالیست­ها و تعداد زیاد اجزای کاتالیست مورد استفاده عواملی چون نقش اجزای کاتالیست، ساختار مراکز فعال و مکانیسم فرآیند هنوز به درستی روشن نیست ]4،5[.

کاتالیست­های زیگلر- ناتا بواسطه دارا بودن مواضع فعال و ساختار متفاوت، تعداد زیاد اجزاء و همچنین ایجاد پدیده­های فیزیکی- شیمیایی نظیر محدودیت­های انتقال جرم در فصل مشترک گاز-مایع در راکتورهای دوغابی، خرد شدن کاتالیست در ابتدای پلیمریزاسیون، محدودیت انتقال منومر به مواضع فعال و راههای انتقال گرما، سینتیک پیچیده­ای دارند ]6[.

کاتالیست­های زیگلر-ناتا فرم­های متفاوتی دارند از قبیل کاتالیزورهای همگن ]2،3،7[ کاتالیزورهای شبه همگن ]6،8،9[ و کاتالیزورهای ناهمگن نگهداری شده و بدون نگهدارنده ]2،7[. در کاتالیزورهای نگهداری شده از یک پایه به منظور توزیع مناسب مواضع فعال استفاده می­گردد ]3،6[. فرمول کلی این کاتالیزورها TiCl4/الکترون دهنده داخلی (Di)/یک ترکیب Mg است. Mg(OEt)2 در طی فرایند ساخت کاتالیست به MgCl2 تبدیل می­شود و این ترکیب نقش بسیار مؤثری بعنوان نگهدارنده کاتالیست دارد ]10،11،13[. در سیستم این کاتالیستها علاوه بر الکترون دهنده داخلی در هنگام پلیمریزاسیون از الکترون دهنده خارجی نیز استفاده می­شود. این کاتالیستها در صورت استفاده از الکترون دهنده های مناسب می­توانند  PP  با شاخص تک آرایشی (I.I) بالا ایجاد کنند. نوع الکترون دهنده اهمیت خاصی در میزان محصول دهی و شاخص تک آرایشی کاتالیست دارد ]11،13،14[. در کاتالیزورهایی که ترکیب فنالات به عنوان الکترون دهنده داخلی در ساختار آنها بکار گرفته می­شود، از یک ترکیب سیلان به فرمول کلی نیز به عنوان الکترون دهنده خارجی استفاده می­شود. استفاده از این نوع الکترون دهنده های داخلی و خارجی در بسیاری از کارهای تحقیقاتی و صنعتی متداول است. البته نکته مهم این است که در سالهای اخیر از کاتالیزورهای همگن نوع متالوسن و متیل آلومینواکسین (MAO) برای پلیمریزاسیون پروپیلن استفاده شده و نتایج بسیار خوبی بدست آمده است، و این کاتالیزورها برای تهیه PP ایزوتاکتیک نیز نتایج خوبی را نشان داده­اند ]15،16[. همچنین استفاده از H2 بعنوان عامل انتقال زنجیر برای کالیزورهای زیگلر-ناتا درحدود سال 1955 متداول گشت ]17[.

 

  • تعریف کاتالیست­های زیگلر- ناتا

کاتالیست زیگلر- ناتا را می­توان به عنوان ترکیبی از یک فلز واسطه گروه­های IV تا VIII و یک ترکیب آلی-فلزی از یکی از فلزات گروه­های I تا III جدول تناوبی تعریف کرد. ترکیب حاصل از فلز واسطه به عنوان کاتالیست و ترکیب آلی-فلزی به عنوان کمک کاتالیست محسوب می­شود. اکثر جزء کاتالیست متشکل از هالیدها یا اکسی هالیدهای تیتانیوم، وانادیوم، کرم، مولیبدن و زیرکونیوم می­باشد. در برخی تحقیقات ترکیبات آهن و کبالت مؤثر شناخته شده­اند. برخی از لیگاندهای دیگر غیر از هالیدها یا اکسی هالیدها که مورد تحقیق قرار گرفته­اند شامل الکوکسی استیل استونیل، سیکلو پنتادی انیل و فنیل می­باشند. کمک کاتالیزورها معمولاً هیدریدها یا الکیل آریلهای فلزاتی همچون آلومینیم، روی، قلع، کادمیم، بریلیم و منیزیم هستند ]18[.

از میان الکیلها، هالیدها و آریل­های فلزی ترکیبات الکیل آلومینیم هم از نظر قیمت و هم از نظر کارایی مناسبترین شناخته شده­اند. ترکیبات آلی یا معدنی برای مقاصد خاص به این ترکیب دوتایی اولیه اضافه        می­شوند. مثلا افزایش الکترون دهنده­ها برای بهبود ایزوتاکتیسیتی، افزایش نگهدارنده برای افزایش فعالیت کاتالیست، هیدروژن برای کنترل جرم مولکولی و ....  به هر حال تعریف دوتایی فوق، امروزه شامل چندین ترکیب آلی و معدنی است ]19[. البته همه این ترکیبات کاتالیزورهای فعالی را ایجاد نمی­کنند، بدین معنی که هر ترکیب خاص ممکن است فقط برای منومر خاصی فعال باشد ]2[. تا کنون مهمترین سیستم­های زیگلر-ناتا که به طور کامل مطالعه شده­اند، مخلوط­هایی از ترکیبات تیتانیوم تری هالیدها و تترا هالیدها باتری الکیل آلومینیم می­باشند ]18[.

تعریف دیگری نیز برای این کاتالیست­ها ارائه شده است و آن عبارت پلیمریزاسیون کئوردینه­ای است. این تعریف بیشتر بر جنبه های مکانیسمی فرایند پلیمریزاسیون با استفاده از کاتالیست­ها دارد، زیرا طی فرایند پلیمریزاسیون منومر با فلز واسطه کئوردینه می­شود ]19[.

 تاریخچه

تاریخچه مختصری از توسعه کاتالیست­های زیگلر- ناتا به شرح زیر می­باشد:

  • پلیمریزاسیون الفینها به سال 1898 باز می­گردد، یعنی وقتی که Van Pechman پلی اتیلن را از دی آزومتان تهیه کرد ]20[.
  • در سال 1930 Friedrich و Marvel ]21[ اتیلن را به پلی اتیلن با جرم مولکولی کم در حضور الکیل­های لیتیم تبدیل نمودند.
  • کمپانی ICI در سال 1935 در فشار بالا (atm 3000-1000) و دمای بالا (°C 300-100) در حضور یک آغازگر رادیکالی محصول سفید رنگ واکسی شکل بدست آورد که بعداً پلی اتیلن نامیده شد.
  • برای اولین بار در سال 1950 یک جامد خطی سر به دم PP که خواص مشخصه ساختمانهای ایزوتاکتیک را نشان می داد بوسیله شیمیدان آمریکایی کارموندی[3] بدست آمد ]22[.
  • تحقیقات زیگلر در زمینه ترکیبات آلی-فلزی و کاربرد آنها برای پلیمریزاسیون اتیلن نتایج مهیجی در سال 1953 بدست آورده در همین سال کمپانی پترولیوم فیلیپس پلیمریزاسیون اتیلن در فشار کم و با استفاده از اکسید کروم نگهداری شده روی سیلیکا یا آلومینا را انجام داد ]24،23[.
  • کشف زیگلر توسط پروفسور ناتا برای دیگر α-الفینها در سال 1954 توسعه یافت ]25[.
  • هم کاتالیست زیگلر- ناتا و هم کاتالیستهای فیلیپس در سالهای 1957-1956 به مرحله تولید پلیمر در مقیاس تجاری رسیدند.

در مورد کاتالیست­های زیگلر- ناتا اولین توسعه قابل توجه در اوایل دهه 1960 بدست آمد یعنی وقتی که از ترکیبات منیزیم فعال مانند منیزیم هیدروکسی کلرید ]24[ و منیزیم هیدروکسی سولفات ]26[ به عنوان نگهدارنده استفاده شد.

شامل 113 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق مطالعه پلیمریزاسیون پروپیلن با استفاده از کاتالیست زیگلر- ناتا

820 - دانلود طرح توجیهی: تولید کاتالیست کانورتور - 44 صفحه

اختصاصی از ژیکو 820 - دانلود طرح توجیهی: تولید کاتالیست کانورتور - 44 صفحه دانلود با لینک مستقیم و پر سرعت .

820 - دانلود طرح توجیهی: تولید کاتالیست کانورتور - 44 صفحه


820 - دانلود طرح توجیهی: تولید کاتالیست کانورتور - 44 صفحه

 

 

 

 

 

 

 

 

 

دانلود طرح توجیهی و مطالعات امکان سنجی طرح

بررسی ابعاد مختلف طرح (معرفی محصول - مالی منابع انسانی فضا و ...)

دارای فرمت PDF می باشد.

مفصل و با تمام جزئیات بسیار کامل و مرتب

مناسب برای شروع یک کسب و کار

مناسب جهت ارائه به دانشگاه به عنوان پروژه درسی

نگارش طرح توجیهی یک طرح کسب و کار خوب باید مانند یک داستان، گویا و واضح باشد و باید اهداف کسب و کار را به صورت موجز و کامل بیان کرده و راه رسیدن به آنها را نیز مشخص نماید. به‌گونه‌ای که سرمایه‌گذاران (دست‌اندرکاران کسب و کار) دقیقاً مفهوم را متوجه شده و خودشان نیز راغب به خواندن و درک دیگر بخش‌ها گردند.

طرح توجیهی در واقع سندی آماده ارائه می باشد که در آن نحوه برآورد سود و زیان و سرمایه ثابت، سرمایه در گردش و نقطه سر به سر، بازدهی سرمایه، دوره برگشت سرمایه و ... بیان خواهد شد.

در صورتی که نیاز به جزئیات بیشتر و یا دریافت فهرست مطالب دارید از طریق بخش پشتیبانی و یا ایمیل فروشگاه با ما در ارتباط باشید.


دانلود با لینک مستقیم


820 - دانلود طرح توجیهی: تولید کاتالیست کانورتور - 44 صفحه