ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نسبت های مثلثاتی

اختصاصی از ژیکو نسبت های مثلثاتی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 3

 

نسبت های مثلثاتی

تاریخچه

مثلثات یکی از شاخه‌های ریاضیات است که با سه‌گوش‌ها و زاویه‌ها و تابع‌های مثلثاتی مثل سینوس و کسینوس سروکار دارد. مثلات در بسیاری از شاخه‌های ریاضیات محض و همچنین ریاضیات کاربردی کاربرد دارد. به همین ترتیب مثلات در علوم طبیعی نیز دارای کاربرد است.

احتمالا مثلثات برای استفاده در ستاره شناسی ایجاد شده و کاربردهای اولیه آن نیز در همین باره بوده است.

تالس اولین کسی نبود که این قضیه را کشف کرد قبل از او مصریان و بابلیان این قضیه را میدانستند ولی آنها نتوانسته بودند اثباتی برای آن بیان کنند. چون این قضیه اولین بار توسط تالس به اثبات رسید به نام او نیز معروف شد.البته تالس با استفاده از تعریف مثلث متساوی الساقین و نیز علم به این موضوع که جمع زوایای یک مثلث، 180 درجه است ،این قضیه را اثبات کرد.

نسبت های مثلثاتی

مثلث از اساسی ترین اشکال در هندسه میباشد.یک مثلث دارای سه راس است که سه ضلع این رئوس را به هم وصل میکند.در هندسه اقلیدسی این اضلاع خطوطی مستقیم هستند. ولی در هندسه کروی این اضلاع کمان هایی از دایره عظیمه میباشند.این دو نوع مثلث را میتوانید در شکلهای روبرو مشاهده نمایید .

انواع مثلث

مثلث متساوی الاضلاع: مثلثی است که دارای سه ضلع با طولهای مساوی است و زوایای داخلی این مثلث نیز با هم برابرند.

مثلث متساوی الساقین: مثلثی است که دارای دو ضلع با طولهای مساوی استو دو زاویه داخلی برابر دارد.

البته مثلث میتواند دارای سه ضلع با طولهای مختلف و زوایای غیر مساوی باشد.

مثلث قائم الزاویه: مثلثی را گویند که یکی از زوایای آن 90درجه باشد.نسبت های مثلثاتی مانند sin و cos ،بر روی مثلث قائم الزاویه تعریف میشوند.

مثلث منفرجه: مثلثی را گویند که یکی از زوایای داخلی آن بیشتر از 90 درجه باشد.

مثلث حاده : مثلثی را گویند که تمام زوایای داخلی آن کمتر از 90 درجه باشد.

300 سال قبل از میلاد اقلیدس ،اصول اولیه درباره مثلث را ارائه داد.به عنوان مثال یکی از اصول مهم در مورد مثلث این است که مجموع زوایای داخلی یک مثلث برابر 180 درجه است. بر اساس این اصل میتوان با معلوم بودن دو زاویه از مثلث اندازه زاویه سوم را بدست آورد. یکی از مهمترین قضایای موجود در مثلثات قضیه فیثاغورث میباشد.در این قضیه رابطه بین وتر و اضلاع قائم یک مثلث قائم الزاویه بیان میشود.

محاسبه مساحت مثلث

برای محاسبه مساحت یک مثلث روشهای مختلفی وجود داردو در ادامه به توضیح این روشها می پردازیم .

روش هندسی

برای محاسبه مساحت یک مثلث باید طول ارتفاع مثلث و نیز طول قاعده(ضلعی که ارتفاع بر آن عمود است) آن را داشته باشیم.آنگاه میتوانیم از فرمول زیر استفاده کنیم:

 

در این فرمول b طول قاعده و h طول ارتفاع مثلث میباشد. در شکل زیر نحوه بدست آمدن این فرمول بیان شده است:

تبدیل مثلث به یک متوازی الاضلاع که دو برابر مثلث مساحت دارد وسپس تبدیل متوازی الضلاع به یک مستطیل

برای پیدا کردن مساحت مثلث (قسمت سبز) ابتدا یک کپی از مثلث (قسمت آبی) را برداشته و آن را 180 درجه میچرخانیم و به مثلث اولیه متصل میکنیم تا یک متوازی الاضلاع بدست آید. با بریدن قسمتی از متوازی الاضلاع و متصل کردن آن به ضلع دیگر آن(همانند شکل) یک مستطیل ایجاد میشود. چون مساحت مستطیل برابر bh است .پس مساحت مثلث اولیه، نصف این مساحت خواهد بود.

روش برداری

مساحت یک متوازی الاضلاع را میتوان با استفاده از بردارها محاسبه کرد.اگر AB,AC را مطابق شکل فرض کنیم آنگاه مساحت ABCD برابر |AB × AC| خواهد بود.این مفدار ،اندازه ضرب خارجی دو بردار AB و AC میباشد.پس مساحت مثلث ABC برابر با نصف اندازه ضرب خارجی دو بردار AB و AC خواهد شد.

روش مثلثاتی

ارتفاع یک مثلث را میتوان با استفاده از روابط مثلثاتی بدست آورد.به عنوان مثال در شکل روبرو ارتفاع مثلث از فرمول محاسبه میشود.اگر این فرمول را در فرمول جایگذاری کنیم فرمول بدست می آید:

روش مختصاتی

فرض میکنیم نقطه A به مختصات (0, 0)یک راس از مثلث باشد و نقاط B به مختصات(x1, y1) و C به مختصات(x2, y2) دو راس دیگر مثلث باشند.در این صورت مساحت مثلث نصف مقدار|x1y2 − x2y1| خواهد شد.

فرمول heron

راه دیگر محاسبه مساحت مثلث استفاده از فرمول heron است. این فرمول به صورت زیر است:

 

گرد آورنده : محمد هادی اقتصادی


دانلود با لینک مستقیم


نسبت های مثلثاتی

تحقیق در مورد توابع مثلثاتی

اختصاصی از ژیکو تحقیق در مورد توابع مثلثاتی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد توابع مثلثاتی


تحقیق در مورد توابع مثلثاتی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه15

 

فهرست مطالب

 

 

ارتفاع مثلث

اصل نامساوی مثلثی

تابع تانژانت دوره‎ای، با دورة ْ180است:

اندازة زاویه

انتقال) توابع مثلثاتی

برای محاسبة مساحت مثلث از دستور  که در آن  و به دستور هرون Heron مرسوم است، نیز استفاده می‎کنند.

 

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of external angle bisectors of triangle

تصفیه: در هر مثلث، مربع اندازة نیمساز هر زاویة برونی، برابر است با حاصلضرب اندازه‎های دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد، منهای حاصلضرب اندازه‎های دو ضلع آن زاویه.

یعنی اگر در مثلث ABC AD¢نیمساز زاویة برونی A باشد داریم:

 

اگر اندازة نیمسازهای زاویه‎ای برونی A، B و C از مثلث ABC را بترتیب با ، d¢a و d¢b و d¢c محیط مثلث را با ‍P2 نشان دهیم، داریم:


دانلود با لینک مستقیم


تحقیق در مورد توابع مثلثاتی