در این پست می توانید متن کامل این پایان نامه را با فرمت ورد word دانلود نمائید:تخمین توابع ترمودینامیکی محلولهای مائی (نظری- تجربی)
-4-2 مدلهای آماری
مدلهایی که بر اساس دیدگاههای مکانیک آماری استوار هستند به طور وسیعی در پیشگویی خواص ترمودینامیک محلولهای الکترولیت مورد استفاده قرار میگیرد. بر اساس گفته لی و همکارانش ]71[ بر پایه مفهوم ترمودینامیک آماری دو روش جهت مطالعه رفتار و ساختمان مواد وجود دارد یکی استفاده از دادههای شبیهسازی مونت کارلو (Montecarlo) یا حرکتهای مولکولی (Molcalardynamics) و روش دیگر استفاده از معادلات انتگرالی از قبیل (Percus – yevick) یا HNS (Hypernetted chain) میباشد. تمام این روشهای مکانیک آماری با در نظر گرفتن تمام برهمکنشهای موجود در محلول الکترولیت به محاسبه انرژی پتانسیل محلول الکترولیت و از آنجا به محاسبه خواص ترمودینامیکی محلول الکترولیت میپردازند. در تمام این روشها برای محاسبه خواص ترمودینامیکی محلول الکترولیت، در تعریف محلول یا از مدل لاتیک (Latic) یا از مدل سل (Cell) استقاده میکنند که در مدل lattic اجزاء سیستم در فضا به صورت پیوسته پخش شده اند. در روش مدل (Cell) نیز سیستم به سلهایی که در هر کدام یک جزء محلول وجود دارد تقسیم میشود. در این روش ابتدا تعداد اجزاء محاسبه و بعد انرژی درونی یک سیستم محاسبه میشود. اساس روش شبیهسازی مونت کارلو به این ترتیب است که متوسط میانگین نشانههایی (اجزاء) که ما مقدار آنها را میخواهیم بدانیم میدهد. به عبارت دیگر نتایج شبیهسازی مونت کارلو مقدار متوسط تصادفی مختلف از مقادیری که ما میخواهیم بدست آوریم را میدهد. به عنوان مثال لاند و همکارانش ]64[ از روش شبیهسازی مونت کارلو برای محاسبه ضریب فعالیت آب دریا استفاده کردند که هر دو نیروهای با برد بلند و نیروهای با برد کوتاه را در نظر گرفتند.
در روش دینامیک مولکولسی نیز مانند روش مونت کارلو مقادیر متوسط اجزاء موجود متوسط کامپیوتر محاسبه میشود ]100[.
با استفاده از این دیدگاهها دو نوع مدل مکانیک آماری که در آن محلولهای الکترولیت مدلسازی میشوند وجود دارد:
1- مدلهایی از نوع MM (McMillan – Mayer) (91، 39) که در آنها حلال به عنوان یک محیط با ثابت دی الکتریم پیوسته در نظر گرفته میشود و تنها اثرات تقابلی بین ذرات یونی وجود دارد بنابراین مدل دبای و هوکل از نوع مدل MM میباشد.
2- نوع دوم مدلهای از نوع BO (Born Oppenheimer) میباشد در این نوع مدلها ذرات تشکیل دهنده حلال نیز در میزان نیروهای بین مولکولی دخیل هستند. این نوع از مدلها از نوع مدلهای غیر ابتدایی (Nonprimitive) می باشند.
مدل دبای و هوکل از دیدگاه مکانیک آماری
مدل دبای – هوکل را میتوان از دیدگاه مکانیک آماری نیز تحلیل کرد. اگر یک نمک حل شده در آب را در نظر بگیریم و با توجه به این نکته که بر مبنای تئوری MM حلال توسط یک محیط با ثابت دی الکتریک یکنواخت جانشین میشود در این صورت معادله ارنشتاین زرنیک (oz) [40] را میتوان به صورت زیر ارائه داد:
(4-75)
(4-76)
h(r) تابع همبستگی غیر مستقیم و c(r) تابع همبستگی مستقیم نامیده میشوند همچنین g(r) تابع توزیع شعاعی که بیانگر نحوه توزیع ذرات در حجم محدودی از فضا میباشد نامیده میشود. از آنجایی که مدل دبای – هوکل در ناحیه رقیق از غلظت حل شونده اعمال میشود میتوان نوشت:
(4-77)
(4-78)
Wij پتانسیل نیروی متوسط یونها میباشد. با توجه به فرضیات فوق و با در نظر گرفتن قواعد مذکور در تبدیل فضای ریاضیاتی موجود بر یک فضای فوریه میتوان به راحتی به عبارتت معروف دبای و هوکل دست یافت. بای جزئیات بیشتر به مرجع ]71[ مراجعه شود.
مدل تقریب متوسط کروی (MSA)
مدل تقریب متوسط کروی (MSA) یکی از مدلهای ساده و مناسب برای توصیف خواص ترمودینامیکی محلول الکترولیت است. در این مدل فرض شده که یونهای الکترولیت کرات سخت باردار باشند و حلال یک محیط دی الکتریمی پیوسته باشد. مدل MSA بر پایه معادله انتگرالی اورنشتین – زرنیک (O – Z) میباشد. این مدل ابتدا به صورت مدل MSA محدود و بعد به صورت مدل MSA غیر محدود و توسعه یافته ارائه گردید. برای توسعه این مدل لازم است نگاهی اجمالی به نظریه اغتشاش و سیستم مرجع کره سخت داشته باشیم.
نظریه اغتشاش (Perturbationtheory):
تئوری اغتشاش یکی از مهمترین تئوریها در توسعه تئوری ساختار مایعات در طول چند دهه گذشته میباشد. این تئوری در سال 1954 توسط زوانزیگ (152) توسعه داده شد و بعدها توسط رولینسون (111) و مک کواری دکتز (92) جهت تعیین تابع تقسیم (Partition Function) یک مجموعه کونیکال (Canonical Ensembel) به کار گرفته شد. تئوری اغتشاش بعدها برای مایعات با معرفی معادلات انتگرالی توسط هندرسون (16)، توسعه بیشتری داده شد. در این تئوری کل انرژی ناشی از تاثیر متقابل ذرات به دو قسمت تقسیم میشود. قسمت اول مربوط به حالت مرجع (Reference state) و قسمت دوم به حالت اغتشاشی (Pertarbation State) مربوط میشودو سهم اغتشاش به شکل یک دنباله بیان میشود که جمله اول آن شامل اثرات متقابل بین دو ذره و جملات بالاتر شامل اثرات متقابل بین چند ذره میباشد. نتایج حاصل از این تئوری برای مولکولهای با پتانسیل چاه مربعی در مقایسه با نتایج شبیهسازی مونت کارلو از دقت بسیار بالایی برخوردار است ]71[.
(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است