ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود کاربرد ابررسانا در سیم و کابل

اختصاصی از ژیکو دانلود کاربرد ابررسانا در سیم و کابل دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 3

 

کاربرد ابررسانا در سیم و کابلکشف متحول کننده ابررساناهای دما بالا در سال ۱۹۸۶ منجر به تحول و تولید نوع جدیدی از کابلها در سیستمهای قدرت شد. در ایالات متحده، اروپا و ژاپن رقابت سختی بر روی تجارت تولید آینده کابلهای ابررسانائی وجود دارد. قابلیت هدایت جریان برق در کابلهای HTSبالغ بر ۱۰۰ بار بیشتر از هادیهای آلومینیومی و مسی متداول می‌باشد. اندازه، وزن و مقاومت این نوع کابلها از کابلهای معمولی بهتر بوده و امروزه تولیدکنندگان تجهیزات الکتریکی در سراسر دنیا سعی دارند با استفاده از تکنولوژی HTS باعث کاهش هزینه‌ها و افزایش ظرفیت و قابلیت اطمینان سیستمهای قدرت شوند.● کاربرد ابررسانا در ترانسفورماتورهااستفاده از مواد ابررسانا در سیم‌بندی ترانسفورماتورها باعث ۵۰% کاهش در تلفات، وزن و ابعاد ترانسفورماتور نسبت به انواع متداول ترانسفورماتورهای روغنی شده و به علاوه تأثیر قابل توجهی نیز در افزایش بازده، کاهش افت ولتاژ و افزایش ظرفیت اضافه بار ترانسفورماتور دارد. استفاده از ترانسفورماتورهای ابررسانا با توجه به حجم کم و عدم استفاده از روغن برای خنک‌سازی، نقش قابل ملاحظه‌ای در بهبود فضای شهری و کاهش هزینه‌های زیست محیطی خواهد داشت.● کاربرد ابررسانا در موتورها و ژنراتورهادرصورت استفاده از سیمهای ابررسانا به جای سیمهای مسی در روتور ماشینهای القایی، تلفات، حجم، وزن و قیمت آنها کاهش قابل ملاحظه‌ای خواهد داشت و با افزایش بازده، صرفه‌جویی قابل توجهی در انرژی الکتریکی صورت می‌گیرد. کویل ژنراتورهای سنکرون نیز با مواد ابررسانای سرامیکی قابل ساخت می‌باشد که منجر به افزایش قابل توجهی در بازده ژنراتور خواهد شد. به علاوه تکنولوژی ابررسانا امروزه در ساخت کندانسورهای سنکرون نیز کاربرد دارد. کندانسورهای ابررسانا دارای بازده بیشتر، هزینه نگهداری کمتر و قابلیت انعطاف بهتری هستند.● کاربرد ابررسانا در ذخیره سازهای مغناطیسیدر سیستم قدرت بین قدرتهای الکتریکی تولیدی و مصرفی تعادل لحظه‌ای برقرار است و هیچگونه ذخیره انرژی در آن صورت نمی‌گیرد. بنابراین تولید شبکه ناچار به تبعیت از منحنی مصرف است که غیر اقتصادی می‌باشد. ابرسانای ذخیره کننده انرژی مغناطیسی (SMES) وسیله‌ای است که برای ذخیره کردن انرژی، بهبود پایداری سیستم قدرت و کم کردن نوسانات قابل استفاده می‌باشد. این انرژی توسط میدان مغناطیسی که توسط جریان مستقیم ایجاد می‌شود ذخیره می‌شود. ابرسانای ذخیره کننده انرژی مغناطیسی هزاران بار قابلیت شارژ و دشارژ دارد بدون اینکه تغییری در خواص مغناطیس آن ایجاد شود. ویژگی ابر رسانایی سیم پیچ نیز موجب می‌شود که راندمان رفت و برگشت فرایند ذخیره انرژی بسیار بالا و در حدود ۹۵% باشد.اولین نظریه‌ها در مورد این سیستم در سال ۱۹۶۹ توسط فریه مطرح شد. وی طرح ساخت سیم‌پیچ مارپیچی بزرگی را که توانایی ذخیره انرژی روزانه برای تمامی فرانسه را داشت ارائه کرد که به خاطر هزینه ساخت بسیار زیاد آن پیگیری نشد. در سال ۱۹۷۱ تحقیقات در آمریکا در دانشگاه ویسکانسین برای فهمیدن بحثهای بنیادی اثر متقابل بین انرژی ذخیره شده و سیستم‌های چند فاز به ساخت اولین دستگاه انجامید. شرکت هیتاچی در سال ۱۹۸۶ یک دستگاه SMES به ظرفیت ۵ مگاژول را آزمایش کرد. در سال ۱۹۹۸ نیز ذخیره‌ساز ۳۶۰ مگاژول توسط شرکت ایستک در ژاپن ساخته شد. علاوه بر ذخیره‌سازی انرژی به منظور تراز منحنی مصرف و افزایش ضریب بار، سیستم‌های مورد اشاره با اهداف دیگری نیز مورد توجه قرار گرفته‌اند.بروز اغتشاشهای مختلف در شبکه قدرت از جمله تغییرات ناگهانی بار، قطع و وصل خطوط انتقال و … به عدم تعادل سیستم می‌انجامد. در این شرایط انرژی جنبشی محور ژنراتورهای سنکرون مجبور به تأمین افزایش انرژی ناشی از اختلال هستند و درصورت حفظ پایداری دینامیکی، حلقه‌های کنترل سیستم فعال شده و تعادل را برقرار می‌سازند. این روند، نوسان متغیرهای مختلف مانند فرکانس، توان الکتریکی روی خطوط و… را موجب می‌شود که مشکلات مختلفی را در بهره برداری از سیستم قدرت به دنبال دارد. اما اگر در سیستم مقداری انرژی ذخیره شده باشد، با مبادله سریع آن با شبکه در مواقع مورد نیاز می‌توان مشکلات فوق را کاهش داد. با توجه به اینکه در این سیستم انرژی از صورت الکتریکی به صورت مغناطیسی و یا بر عکس تبدیل می‌شود، ذخیره‌ساز ابررسانایی دارای پاسخ دینامیکی سریع می‌باشد و بنابراین می‌تواند در جهت بهبود عملکرد دینامیکی نیز به کار رود.معمولاً واحدهای ابررسانایی ذخیره انرژی را در دو مقیاس ظرفیت بالا یعنی حدود ۱۸۰۰ مگاژول برای تراز منحنی مصرف، و ظرفیت پایین (چندین مگا ژول) به منظور افزایش میرایی نوسانات و بهبود پایداری سیستم می‌سازند. سیم پیچ ابررسانا از طریق مبدل به سیستم قدرت متصل و شارژ می‌شود و با کنترل زاویه آتش تریسیتورها ولتاژ DC دو سر سیم پیچ ابررسانا به طور پیوسته در بازهٔ وسیعی از مقادیر ولتاژهای مثبت ومنفی قابل کنترل است. ورودی ذخیره‌ساز انرژی می‌تواند تغییرات ولتاژ شبکه، تغییر فرکانس شبکه، تغییر سرعت ماشین سنکرون و… باشد و خروجی نیز توان دریافتی خواهد بود. مهم ترین قابلیت SMESجداسازی و استقلال تولید از مصرف است که این امر مزایای متعددی از قبیل بهره برداری اقتصادی، بهبود عملکرد دینامیکی و کاهش آلودگی را به دنبال دارد. در کابرد AC جریان الکتریکی هنوز تلفات دارد اما این تلفات می‌تواند با طراحی مناسب کاهش پیدا کند. برای هر دوحالت کاری AC وDC انرژی زیادی قابل ذخیره‌سازی است. بهترین دمای عملکرد برای دستگاههای مورد اشاره نیز ۵۰ تا ۷۷ درجه کلوین است.● کاربرد ابررسانا در محدودسازهای جریان خطاعلاوه بر موارد گفته شده، محدودسازهای ابررسانائی جریان خطا یا SFCL نیز رده تازه‌ای از وسایل حفاظتی سیستم قدرت را ارائه می‌کنند که قادرند شبکه را از اضافه جریانهای خطرناکی که باعث قطعی پر هزینه برق و خسارت به قطعات حساس سیستم می‌شوند حفاظت نمایند. اتصال کوتاه یکی از خطاهای مهم در سیستم قدرت است که در زمان وقوع، جریان خطا تا بیشتر از ۱۰ برابر جریان نامی افزایش می‌یابد و با رشد و گسترش شبکه‌های برق، به قدرت اتصال کوتاه شبکه نیز افزوده می‌شود. تولید جریانهای خطای بزرگتر، ازدیاد گرمای حاصله ناشی از عبور جریان القائی زیاد در ژنراتورها، ترانسفورماتورها و سایر تجهیزات و همچنین کاهش قابلیت اطمینان شبکه را در پی دارد. لذا عبور چنین جریانی از شبکه احتیاج به تجهیزاتی دارد که توانایی تحمل این جریان را داشته باشند و جهت قطع این جریان نیازمند کلیدهایی با قدرت قطع بالا هستیم که هزینه‌های سنگینی به سیستم تحمیل می‌کند.اما اگر به روشی بتوان پس از آشکارسازی خطا، جریان را محدود نمود، از نظر فنی و اقتصادی صرفه‌جویی قابل توجهی صورت می‌گیرد. انواع مختلفی از محدود کننده‌های خطا تا به حال برای شبکه‌های توزیع و انتقال معرفی شده‌اند که ساده‌ترین آنها فیوزهای معمولی است که البته پس از هر بار وقوع اتصال کوتاه باید تعویض شوند. از آنجاییکه جریان اتصال کوتاه در لحظات اولیه به خصوص در پریود اول موج جریان، دارای بیشترین دامنه است و بیشترین اثرات مخرب از همین سیکل‌های اولیه ناشی می‌شود باید محدودسازهای جریان خطا بلافاصله بعد از وقوع خطا در مدار قرار گیرند. محدودکننده‌های جریان اتصال کوتاه طراحی شده در دهه‌های اخیر، عناصری سری با تجهیزات شبکه هستند و وظیفه دارند جریان اتصال کوتاه مدار را قبل از رسیدن به مقدار حداکثر خود محدود نمایند به طوری که توسط کلیدهای قدرت موجود قابل قطع باشند.این تجهیزات در حالت عادی، مقاومت کمی در برابر عبور جریان از خود نشان می‌دهند ولی پس از وقوع اتصال کوتاه و در لحظات اولیه شروع جریان، مقاومت آنها یکباره بزرگ شده و از بالا رفتن جریان اتصال کوتاه جلوگیری می‌کنند. این تجهیزات پس از هر بار عملکرد باید قابل بازیابی بوده و در حالت ماندگار سیستم، باعث ایجاد اضافه ولتاژ و یا تزریق هارمونیک به سیستم نگردند. محدودسازهای اولیه با استفاده از کلیدهای مکانیکی امپدانسی را در زمان خطا در مسیر جریان قرار می‌دادند. با ورود ادوات الکترونیک قدرت کلیدهای تریستوری برای این موضوع مورد استفاده قرار گرفتند و مدارهای متعددی از جمله مدارهای امپدانس تشدید و ابررسانا، ارائه گردیده است. محدودکننده‌های ابررسانا در شرایط بهره‌برداری عادی سیستم یک سیم‌پیچ با خاصیت ابررسانایی بوده (مقاومت و افت ولتاژ کمی را باعث می‌شود) ولی به محض وقوع اتصال کوتاه و افزایش جریان از یک حد معینی (جریان بحرانی) سیم‌پیچ مربوط مقاومت بالایی از خود نشان می‌دهد و به همین دلیل جریان خطا کاهش می‌یابد. عمل فوق در زمان کوتاهی انجام می‌پذیرد و نیاز به سیستم کشف خطا نمی‌باشد. برآورد اولیه بخش ابر رسانائی EPRI نشان می‌دهد که استفاده از محدودسازهای ابررسانائی جریان یک بازار فروش با درآمد حدود ۳ تا ۷ میلیارد دلار در ۱۵ سال آینده به وجود خواهد آورد.● سوئیچهای ابررسانابا تغییر در شدت میدان مغناطیسی، امکان تغییر در وضعیت جسم ابررسانا از ابررسانایی به مقاومتی و برعکس امکانپذیر است. بنابراین از مواد ابررسانا جهت انجام سوئیچینگ یا کلیدزنی نیز می‌توان بهره گرفت. تحقیقات اولیه در این زمینه از اواخر دهه ۱۹۵۰ میلادی آغاز شد و کوششهایی برای استفاده از سوئیچهای ابررسانا در مدارها و حافظه کامپیوترهای بزرگ صورت گرفت. باک در سال ۱۹۵۶ مداری با نام کرایوترون شامل یک سیم‌پیچ نیوبیوم با دمای بحرانی ۳/۹ درجه کلوین و هسته‌ای از سیم تانتالوم با دمای بحرانی ۴/۴ درجه کلوین معرفی نمود که با توجه دمای ۲/۴ درجه کلوین هلیوم مایع، امکان تغییر وضعیت سیم تانتالوم در اثر ایجاد جریان الکتریکی و درنتیجه میدان مغناطیسی در سیم‌پیچ نیبیوم وجود داشت. با توسعه دانش نیمه‌هادی، توجه به سوئیچهای ابررسانا کاهش یافت اما حجم و تلفات کمتر، و سرعت بالاتر تراشه‌های ابررسانا نسبت به تراشه‌های نیمه‌هادی، استفاده از سلولهای کرایوترونی و جایگزینی ابررسانا به جای مدارهای مسی را برای ساخت ابرکامپیوترهای بسیار سریع و کم تلفات، حتی با وجود پیشرفتهای صنعت نیمه‌هادی توجیه‌پذیر می‌سازد. علاوه بر سلولهای کرایوترونی که با سرعت ۱/۰ میکروثانیه در ساخت حافظه و تراشه‌های الکترونیک قابل استفاده است، از اتصالات جوزفسون که مبنای عملکرد آنها، اثر تونل‌زنی است نیز برای ساخت سوئیچهای بسیار سریع و با سرعت ۱/۰ نانوثانیه (فرکانس ۱۰ گیگاهرتز) استفاده شده اما درمورد تکنولوژی ساخت آنها به تعداد زیاد، پژوهشها ادامه دارد.● ابررساناها و ژنراتورهای هیدرودینامیک مغناطیسیژنراتورهای هیدرودینامیک مغناطیسی: اصول کلی ژنراتورهای هیدرودینامیک مغناطیسی (MHD) که از سال ۱۹۵۹ پژوهشهایی برای تولید برق به وسیله آنها شروع شده و هنوز ادامه دارد، بر این اساس است که جریان گاز پلاسما (بسیار داغ) یا فلز مذاب از میان میدان مغناطیسی قوی عبور داده می‌شود. با عبور گاز داغ یا فلز مذاب، در اثر میدان مغناطیسی بسیار قوی موجود، یونهای مثبت و منفی به سمت الکترودهایی که در بالا و پایین جریان گاز پلاسما یا فاز مذاب قرار دارند، جذب می‌شوند و مانند یک ژنراتور جریان مستقیم، تولید الکتریسیته را باعث می‌شوند. قدرت الکتریکی این ژنراتور جریان مستقیم با اینورترهای الکترونیک قدرت، به برق جریان متناوب تبدیل و به شبکه متصل می‌شود. با توجه به هزینه بالای تولید الکتریسیته در ژنراتورهای MHD، استفاده از آنها تنها به منظور یکنواختی منحنی مصرف در زمانهای پرباری شبکه مفید است. سیم‌پیچهای بزرگ ابررسانا که از مواد ابررسانای متعارف مانند آلیاژ نیوبیوم تیتانیوم ساخته شده‌اند برای تولید میدانهای مغناطیسی بسیار قوی مناسب و قابل استفاده است. اگر فاصله دو الکترود ۱/۰ متر، سرعت یونها ۴۰۰ متر بر ثانیه و میدان مغناطیسی ۵ تسلا باشد، ولتاژ خروجی ۲۰۰ ولت خواهد بود و در طول کانال ۶ متری و با قطر یک متر، ۴۰ مگاوات انرژی قابل تولید است. مزیت اصلی ژنرتورهای MHD وزن نسبتاً کم آنها در مقایسه با ژنراتورهای متعارف است که استقبال از کاربرد آنها را در صنایع هوایی و دریایی موجب شده است.منبع:

www.hts.blogfa.com کانون دانش


دانلود با لینک مستقیم


دانلود کاربرد ابررسانا در سیم و کابل

آشنایی با ابررساناها و کاربرد آن‌ها در ژنراتورها و موتورهای الکتریکی

اختصاصی از ژیکو آشنایی با ابررساناها و کاربرد آن‌ها در ژنراتورها و موتورهای الکتریکی دانلود با لینک مستقیم و پر سرعت .

آشنایی با ابررساناها و کاربرد آن‌ها در ژنراتورها و موتورهای الکتریکی


آشنایی با ابررساناها و کاربرد آن‌ها در ژنراتورها و موتورهای الکتریکی

 

آشنایی با ابررساناها و کاربرد آن‌ها در ژنراتورها و موتورهای الکتریکی

47 صفحه در قالب word

 

 

 

فهرست مطالب

مقدمه

* فصل اول

آشنایی با ابررساناها و کاربرد آن‌ها در ژنراتورها و موتورهای الکتریکی

ابر رسانایی.........................................  2

کاربردهای ابر رسانه .........  4

 SMESچیست......................................................  5

اولین سیستم SMES ..............................................  6

SMES و مدل‌سازی آن .........................  7

چگونگی انجام کار ابر رسانایی ................  9

ابر رساناها و ژنراتورهای هیدرودینامیک مغناطیسی ......  10

کاربرد ابر رسانا در محدود سازهای جریان خطا............................................................... 12

کاربرد ابر رسانا در ذخیره‌سازهای مغناطیسی....................................................................................... 14

کاربرد ابر رسانا در موتورها و ژنراتورها.................... 17

کاربرد ابر رسانا درترانسفورماتورها.................................................. 18

* فصل دوم

آشنایی با گاورنر و اینورتورها

ویژگی گاورنر ......................................  19

محدوده فشار خروجی گاورنرها ....................................  20

سیستم کنترل توربین‌های گازیEGATROL ..................................................  22

انواعASD ....................................................  24

سیستم‌هایASDجهت کنترل سرعت موتورهای القایی .................  25

 ASDاز نوع ولتاژ متغییر و فرکانس ثابت ....................................................................  27

 ASDاز نوع ولتاژ و فرکانس متغییر......................  29

 

* فصل سوم

آشنایی با ژنراتورهای سنکرون

مولدهای همزمانی سنکرون ........................................  31

اندازه‌گیری پارامترهای مدل مولد همزمان ..........  35

آزمون مدار باز .............................  35

تعیین راکتانس همزمان .....................................................  37

اثر تغییرات باربر کار مولد همزمان ......................  38

شرایط لازم موازی کردن مولدها .....................  41

روش کلی موازی کردن مولدها ..........................  42

مشخصه‌های بسامد- توان مولد همزمان .........  43

مقادیر نامی مولد همزمان ...............................................  44

توان ظاهری و ضریب توان نامی .............................  45

کار کوتاه مدت و ضریب سرویس ......................  46

 

مقدمه

در چند دهه‌ی اخیر سیستم‌های ذخیره‌ساز انرژی با انگیزه‌های متفاوتی به منظور بهبود عملکرد سیستم قدرت، موردتوجه قرار گرفته‌اند. بطور معمول در سیستم قدرت بین قدرتهای الکتریکی تولیدی و مصرفی تعادل لحظه‌ای برقرار است و هیچ‌گونه ذخیره انرژی در آن صورت نمی‌گیرد. بنابراین لازم است میزان تولید شبکه، منحنی مصرف منطقه را تغقیب کند. واضح است بهره‌برداری از سیستم بدین طریق، با توجه به شکل متعارف منحنی مصرف غیر اقتصادی است.

استفاده از ذخیره‌سازی‌های انرژی با ظرفیت بالا به منظور تراز سازی منحنی مصرف و افزایش ضریب بار، از اولین کاربردهای ذخیره انرژی در سیستم قدرت در جهت بهره‌برداری اقتصادی می‌باشد.

علاوه بر این، اغتشاش‌های مختلف در شبکه (تغییرات ناگهانی بار، قطع و وصل خطوط انتقال و...) خارج شدن سیستم از نقطه تعادل را به دنبال دارد. در این شرایط ابتدا از محل انرژی جنبشی محور ژنراتورهای سنکرون انرژی برداشت می‌شود، سپس حلقه‌های کنترل سیستم فعال شده و تعادل را بر قرار می‌سازند. این روند، نوسان متغیرهای مختلف مانند فرکانس، توان الکتریکی روی خطوط و... را موجب می‌شود که مشکلات مختلفی را در بهره‌برداری از سیستم قدرت به دنبال دارد. هر گاه در سیستم مقداری انرژی ذخیره شده باشد، با مبادله سریع آن با شبکه در مواقع مورد نیاز به حد قابل توجهی می‌توان مشکلات فوق را کاهش داد. به عبارت دیگر، ذخیره‌ساز انرژی را می‌توان در بهبود عملکرد دینامیکی سیستم نیز بکار برد.

از اوایل دهه‌ی هفتاد مفهوم ذخیره‌سازی انرژی الکتریکی به شکل مغناطیسی مورد توجه قرار گرفت. با ظهور تکنولژی ابر رسانایی، کاربردهای گوناگونی برای این پدیده فیزیکی مطرح شد. از معروف ترین این کاربردها می‌توان به SMES اشاره کرد. در SMES  انرژی در یک سیم‌پیچ با اندوکتاس بزرگ که از ابر رسانا ساخته شده است، ذخیره می‌شود. ویژگی ابر رسانایی سیم‌پیچ موجب می‌شود که راندمان رفت و برگشت فرایند ذخیره انرژی بالا و در حدود  95% باشد. ویژگی راندمان بالای SMES آن را از سایر تکنیکهای ذخیره انرژی متمایز می کند. همچنین از آنجایی که در این تکنیک انرژی از صورت الکتریکی به صورت مغناطیسی و یا برعکس تبدیل می‌شود، SMES دارای پاسخ دینامیکی سریع می‌باشد. بنابراین می‌تواند در جهت بهبود عملکرد دینامیکی نیز بکار رود. معمولاً واحدهای ابر رسانایی ذخیره‌سازی انرژی را به دو گونه ظرفیت بالا (MWh 500) جهت ترازسازی منحنی مصرف، و ظرفیت پایین(چندین مگا ژول) به منظور افزایش میرایی نوسانات و بهبود پایداری سیستم می‌سازند.

بطور خلاصه مهم‌ترین قابلیت  SMESجداسازی و استقلال تولید از مصرف است که این امر مزایای متعددی از قبیل بهره‌برداری اقتصادی، بهبود عملکرد دینامیکی و کاهش آلودگی را به دنبال دارد.

ابررسانایی

در سال 1908 وقتی کمرلینگ اونز هلندی در دانشگاه لیدن موفق به تولید هلیوم مایع گردید حاصل شد که با استفاده از آن توانست به درجه حرارت حدود یک درجه کلوین برسد.

یکی از اولین بررسی‌هایی که اونز با این درجه حرارت پایین قابل دسترسی انجام داد مطالعه تغییرات مقاومت الکتریکی فلزات بر حسب درجه حرارت بود. چندین سال قبل از آن معلوم شده بود که مقاومت فلزات وقتی دمای آن‌ها به پایین‌تر از دمای اتاق برسد کاهش پیدا می‌کند. اما معلوم نبود که اگر درجه حرارت تا حدود کلوین تنزل یابد  مقاومت تا چه حد کاهش پیدا می‌کند.  آقای اونز که با پلاتینیم کار می‌کرد متوجه شد که مقاومت نمونه سرد تا یک مقدار کم کاهش پیدا می‌کرد که این کاهش به خلوص نمونه بستگی داشت. در آن زمان خالص‌ترین فلز قابل دسترس جیوه بود و در تلاش برای بدست آوردن رفتار فلز خیلی خالص اونز مقاومت جیوه خالص را اندازه گرفت. او متوجه شد که در درجه حرارت خیلی پایین مقاومت جیوه تا حد غیرقابل اندازه‌گیری کاهش پیدا می‌کند که البته این موضوع زیاد شگفت‌انگیز نبود اما نحوه از بین رفتن مقاومت غیر منتظره می‌نمود. موقعی که درجه حرارت به سمت صفر تنزل داده می‌شود به‌جای این‌که مقاومت به آرامی کاهش یابد در درجه حرارت 4 کلوین ناگهان افت می‌کرد و پایین‌تر از این درجه حرارت جیوه هیچ‌گونه مقاومتی از خود نشان نمی‌داد. همچنین این گذار ناگهانی به حالت بی‌مقاومتی فقط مربوط به خواص فلزات نمی‌شد و حتی اگر جیوه ناخالص بود اتفاق می‌افتاد.آقای اونز قبول کرد که پایین‌تر از 4 کلوین جیوه به یک حالت دیگری از خواص الکتریکی که کاملاً با حالت شناخته شده قبلی متفاوت بود رفته است و این حالت تازه «حالت ابر رسانایی» نام گرفت. بعداً کشف شد که ابررسانایی را می توان از بین برد (یعنی مقاومت الکتریکی را می توان مجددا بازگردانید).  و در نتیجه معلوم شد که اگر یک میدان مغناطیسی قوی به فلز اعمال شود این فلز در حالت ابر رسانایی دارای خواص مغناطیسی بسیار متفاوتی با حالت درجه حرارت‌های معمولی می‌باشد.

تاکنون مشخص شده است که نصف عناصر فلزی و همچنین چندین آلیاژ در درجه حرارت‌های پایین ابر رسانا می‌شوند. فلزاتی که ابررسانایی را در درجه حرارت‌های پایین از خود نشان می‌دهند (ابر رسانا) نامیده می‌شوند. سال‌های بسیاری تصور می‌شد که تمام ابررساناها بر طبق یک اصول فیزیکی مشابه رفتار می‌کنند. اما اکنون ثابت شده است که دو نوع ابررسانا وجود دارد که به نوع I و II مشهور می‌باشد. اغلب عناصری که ابررسانا هستند ابررسانایی از نوع I را از خود نشان می‌دهند. در صورتی‌که آلیاژها عموماً ابررسانایی از نوع II را از خود نشان می‌دهند. این دو نوع چندین خاصیت مشابه دارند. اما رفتار مغناطیسی بسیار متفاوتی از خود بروز می‌دهند.

 

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود، ولی در فایل دانلودی همه چیز مرتب و کامل می‌باشد.
متن کامل با فرمت
word را که قابل ویرایش و کپی کردن می باشد، می توانید در ادامه تهیه و دانلود نمائید.


دانلود با لینک مستقیم


آشنایی با ابررساناها و کاربرد آن‌ها در ژنراتورها و موتورهای الکتریکی

دانلود تحقیق آشنایی با ابررسانا ها

اختصاصی از ژیکو دانلود تحقیق آشنایی با ابررسانا ها دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق آشنایی با ابررسانا ها


دانلود تحقیق آشنایی با ابررسانا ها

 

تعداد صفحات : 24 صفحه     -    

قالب بندی :  word     

 

 

 

مقدمه

در سال 1911، کامرلینگ اونس هنگام کار کردن در آزمایشگاه دمای پایین خود کشف کرد که در دمای چند درجه بالای صفر مطلق، k 2/4، جریان الکتریسیته می تواند بدون هیچ اتلاف اختلاف پتانسیل در فلز جیوه جریان پیدا کند. او این واقعه منحصر به فرد را ابررسانایی نامید. کامرینگ در سخنرانی نوبل سال 1913 گزارش داد که حالت ابررسانایی می تواند به وسیله اعمال میدان مغناطیسی به اندازه کافی بزرگ از بین رود.

در حالی که یک جریان القاء شده در یک حلقه بسته ابررسانا به مدت زمان فوق العاده زیادی باقی می ماند و از بین نمی رود. او این رخداد را به طور عملی با آغاز یک جریان ابررسانی در یک سیم پیچ در آزمایشگاه لیدن و سپس حمل سیم پیچ همراه با سرد کننده‌ای که آن را سرد نگه می‌داشت، به دانشگاه کمنویج به عموم نشان داد. بعد از کشف، ابررسانایی در بیش از یک هزار فلز، آلیاژ، ترکیبات و حتی شبه رساناها یافت شد. [1]، اما هیچ نظریه ای برای توضیح ابررسانایی در طول 46 سال بعد از کشف ارائه نگردید. اولین دلیل آن می تواند این باشد که جامعه فیزیک تا حدود 20 سال مبانی علمی لازم برای ارائه راه حل برای این مساله را نداشت: تئوری کوانتم فلزات معمولی. دوم این که تا سال 1933، هیچ آزمایش اساسی در این زمینه انجام نشد.

در این سال مایسنو و اوشنفلو گفتند که یک ابررسانا نه تنها در برابر عبور جریان مقاومت صفر دارد،بلکه به‌طور هم‌زمان‌ خاصیت دیامغناطیس‌نیز از خود نشان می‌دهد.در سال1934، گورتر و کایسیمیر مدل دو مشاوره‌ای را ارائه دادند.

طبق این مدل ابررسانا از دو نوع الکترون آزاد تشکیل شده:1- ابرالکترون (n2) 2- الکترون‌های معمولی(nn)با افزایش دما از صفر تا Tc چگالی الکترون‌های ابررسانشی کاهش و به چگالی الکترون‌های معمولی اضافه می شود و در دمای انتقال تمام الکترون ها به صورت الکترون های معمولی در می آیند.

سوم اینکه، وقتی مبانی علمی لازم بدست آمد، به زودی واضح شد که انرژی مشخصه وابسته به تشکیل ابررسانایی بسیار کوچک می باشد، حدود یک میلیونیم انرژی الکترونی مشخصه حالت عادی، بنابراین نظریه پردازان توجه شان را به توسعه یک تفسیر رویدادی از جریان ابررسانایی جلب کردند. این مسیر را لاندئو رهبری می کرد. کسی که در سال 1953 به همراه گینزبرگ یک تئوری پدیده شناختی را مطرح کردند و یک سری معادلات را فرمول بندی کردند، اما هرگز نتوانستند علت رخ دادن این پدیده را توضیح دهند.[2]

یک کلید راهنما در سال 1950 میلادی بدست آمد، وقتی که محققان در دانشگاه روتگزر کشف کردند که دمای انتقال به حالت ابررسانایی سرب با عکس M ارتباط دارد. M.M جرم ایزوتوپ سرب است. از آنجا که انرژی الرزشی شبکه همان بستگی را با M  دارد، کوانتای پایه آنها، فونون ها، باید نقشی در ظهور حالت ابررسانایی داشته باشند. سرانجام در سال 1957، سه فیزیک دان به نام‌های باردین، کوپر و شیرفر نظریه میکروسکوپی خود را ارائه کردند که بعدا به نام تئوری BCS شناخته شد.

در سال 1965 نقش فونونها در دمای گذار ابررسانایی در اثر ایزوتوپ تاییدی بر نظریه BCS بود. همچنین کوانتش شار و جریان تونلی شاهدان دیگری بر باور این نظریه بودند.

سومین رخداد مهم در تاریخ ابررسانایی در سال 1986 اتفاق افتاد. تا این سال دانشمندان تلاش زیادی را مصروف کشف ابررسانا با دمای انتقال بالاتر کردند. ولی تنها ثمره این تلاش‌ها ماده  با k23بود که در سال1973کشف شد. تا اینکه در سال1986، بدنور و مولر در حال کار کردن از آزمایشگاه IBM نزدیک شهر زوریخ سوئیس، مقاله ای با عنوان« امکان در رسانای دمای بالا در سیستم "Ba-La-Cu-O" منتشر کردند.[؟ ]

این کشف باعث ایجاد زمینه ای جدید در علم فیزیک شد: مطالعه ابررساناهای دمای بالا در سال 1987 این دو دانشمند با فرض اینکه مواد با اثر جان تلر مشخص نیز می توانند ابررساناهایی با دمای گذار بالا تولید کنند، اکسید نیکلی را بررسی کردند، که ابررسانایی را نشان نداد سپس آنها اکسیدهای مس را مورد بررسی قرار دادند، واقع در هشت وجهی متشکل از اتمهای اکسیژن، اثر جان تلر بزرگی از خود نشان می داد. آنها نمونه هایی از مس- لانتانیوم- باریم در اختیار داشتند که بر خلاف پیشگویی نظریه BCS اولیه، دماهای گذار بالاتر از K 35 را نشان می دادند. طی مدت زمان کوتاهی
 Y-Ba-Cu-O (YBCO یا 123Y) با دمای گذار بالای K 80 ساخته شد.[2و4]

از آنجایی که کار با نیتروژن مایع راحت تر و کم هزینه تر از کار با هلیم مایع می باشد، کشف این ابررساناها تحول بزرگی در زمینه تحقیقاتی بوجود آورد، مطالعه ابرساناهای دمای بالا چنان گسترش یافته است که محققان بسیاری به دنبال نظریه میکروسکوپی برای توجیه خواص غیر عادی این مواد هستند.

در سال 1988 دو دسته ترکیبات جدید ابررسانایی کشف شدند این ترکیبات عبارت بودند از Bi-Sr-Ca-Cu-O(BSCCO) وTi-Ba-Ca-Cu-O(TBCCO) که مانند123Y شامل دسته صفحات بودند. به دنبال آن در سال 1993 ترکیبات اکسید جیوه یافت شدند که دمای گذار آنها برای فازهای مختلف بین 94 تا 165 کلوین است. دمای گذار در فشار اتمسفر، K 135 است که در فشار بالاتر به بالای K 60 اهم می رسد[5 و2].

ابررساناهای دمای بالا همه در چند خصوصیات اصلی مشترک اند: ناهمسانگردند، ساختار بلوری لایه لایه دارند و در ساختار آنها صفحات نقش اصلی را بازی می کند. بی شک پدیده ابررسانایی یکی از مسائل مهم و مورد علاقه علم فیزیک است که تا کنون هشت جایزه نوبل که به این موضوع اختصاص یافته در هیچ موضوع دیگری سابقه ندارد.

 

دانلود با لینک مستقیم


دانلود تحقیق آشنایی با ابررسانا ها