ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه تحلیل بازارهای پلیمری آسیا

اختصاصی از ژیکو پروژه تحلیل بازارهای پلیمری آسیا دانلود با لینک مستقیم و پر سرعت .

پروژه تحلیل بازارهای پلیمری آسیا


پروژه تحلیل بازارهای پلیمری آسیا

این فایل حاوی پروژه تحلیل بازارهای پلیمری آسیا می باشد که به صورت فرمت PDF در 17 صفحه در اختیار شما عزیزان قرار گرفته است، در صورت تمایل می توانید این محصول را از فروشگاه خریداری و دانلود نمایید.

 

 

 

 

فهرست
تحلیل مقایسه ای معاملات پلیمری طی دو هفته گذشته
نفت خام
نفتا
پلی اتیلن
پلی پروپیلن ها
پی وی سی
پلی استایرن

 

تصویر محیط برنامه


دانلود با لینک مستقیم


پروژه تحلیل بازارهای پلیمری آسیا

پروژه رشته کامپیوتر با موضوع نور در گرافیک. doc

اختصاصی از ژیکو پروژه رشته کامپیوتر با موضوع نور در گرافیک. doc دانلود با لینک مستقیم و پر سرعت .

پروژه رشته کامپیوتر با موضوع نور در گرافیک. doc


پروژه رشته کامپیوتر با موضوع نور در گرافیک. doc

 

 

 

 

 

 

نوع فایل: word

قابل و یرایش 90 صفحه

 

چکیده:

در عصر حاضر از انوع طراحی نوری برای ایجاد روشنایی روزمره استفاده می شود که قسمتی از این طراحی نوری در اختیار طراحان گرافیک قرار گرفته است.

امروزه نور در زمنیه ی گرافیک چنان تنوعی یافته است که کمتر کسی را می توان یافت که برای تبلیغات محیطی از نور پردازی استفاده نکرده باشد. اما طراحان زیادی هستند که تجربه و آگاهی لازم را در مورد خصوصیات و ویژگی های نور ندارند. این مسئله باعث می شود که ایده های خلاقانه آنها به هنگام استفاده و اجرا جلوه ی واقعی خود را نداشته باشد. بنابر این بهتر است که طراح قبل از شروع نور پردازی با ویژگی های و خصوصیات نور و تجهیزات آن آشنا شود تا نور بتواند باعث خلق یک اثر هنری شده و جلوه ی خود را به طور معجزه آسا نشان دهد.

در این تحقیق سعی شده است که طراحان با نور پردازیها و کاربرد آنها در تبلیغات و استفاده درست از وسایل نور پردازی در جایگاه مناسب با خصوصیات خاص آن آشنا شده و در رشته ی کاری خود حضور مثبت یابند و کارهای نفس به جا گذارند.

 

مقدمه:

همراه با رشد جمعیت و نوآوری های جدید در عرصه علم و صنعت، نیاز به تبلیغات روز به روز افزایش یافته است. و با وجود ظهور تکنولوژی ، قابلیت های متعددی در این زمینه به وجود آمده است.

انسان همواره در کوشش متعادل ساختن زندگی و طبیعت از طریق خلق آثار هنری بوده است.

موندریان می گوید: زمانیکه طبیعت و انسان به تعادل برسند هنر از بین خواهد رفت و اصولاً هر چه زمان جلوتر برود، نارسائیها و عدم تعادل اشیاء موجود در طبیعت بیشتر خواهد شد.

این انسان است که با استفاده از اختیارات خود به طبیعت نظم و هماهنگی می دهد و در آن تنوع ، تعادل و انگیزه ایجاد می کند. مثلاً وقتی تابش یک نور یا یک رنگ انسان را متاثر می سازد احساس او را بر می انگیزد و او را دگرگون می کند. این دگرگونی هم می تواند جنبه مثبت داشته باشد و هم منفی.

او می تواند نورها و رنگهایی را انتخای کند که مطابق امیال و سلایق او باشد و بدینوسیله یک تعادل و توازن در طبیعت به وجود آورد. تا به این تعادل و توازن تضادهای منفی طبیعتی را بالان دهد تا انسان راحت زندگی کند، و در زندگی خود احساس آرامش نماید.

فرض کنید در نور پردازی یا نقاشی فضای یک بیمارستان از یک نور یا رنگ غلط و منفی استفاده شود. طبعاً نمی توان در چنین جایی انتظار بهبودی و سلامت بیماران را داشت.

امروز طراحان با استفاده از وسایل و طراحی نور پردازی ، آثار خود را به نتیجه مطلوب می رسانند و به آنها جلوه خاص می بخشند.

بطور کلی نورپردازی در عصر حاضر در گرافیک محیطی از اهیمت خاص برخوردار است و شرکت های سازنده تجهیزات آن در پی رقابت با یکدیگر هستند و هر روز کالای جدیدی را به بازار عرضه می کنند، که یک طراح باید با ویژگی هر یک از اینها آشنا شود.

در این تحقیق طراح می تواند ضمن آشنایی با جنبه های فیزیکی و روانشناختی نور، با نور پردازی متداول و تجهیزات آن آشنا شود و بادرک ضرورت یادگیری به سراغ آن برود.

 

فهرست مطالب:

تقدیم              

قدر دانی            

فهرست مطالب          

چکیده              

فصل اول- کلیات تحقیق

مقدمه            

بیان موضوع            

اهداف تحقیق           

اهیمت و ضرورت موضوع          

تعریف مفاهیم و اصطلاحات کلیدی        

فصل دوم

پیشینه تحقیق

نور و انواع آن            

تاثیرات نور           

تأثیر نور بر روی جسم انسان        

ارزش و زیبایی نور          

منابع روشنایی          

جنبه های فیزیکی و روانشناختی نور         

جهت نور           

کیفیت نور           

کمیت نور             

فصل سوم

نورپردازی           

ایجاد جلوه در اشیاء به وسیله نورپردازی       

متداولترین نورپردازی         

نورپردازی شاعرانه          

فصل چهارم

پروژکتور           

LCD ها             

شناخت LCD           

سیستم LCD         

ساخت بزرگترین LCD انعطاف پذیر      

LED ها             

LED ها و کاربرد آن          

ویژگیهای LED ها           

استفاده از LEDها در تبلیغات         

DLP ها           

دستگاه ویدئو پرژکتور        

ساختار و سیستم دستگاه ویدئو پرژکتور      

میزان درخشش         

میزان دقت          

اندازه تصویر          

تفاوت سیستم LCD و DLP از لحاظ کیفیت و کنتراست رنگ    

جایگاه سیستم تبلیغات        

فصل پنجم

نتیجه گیری و پیشنهادات          

فصل ششم

منابع و مأخذ

 

منابع ومأخذ:

خوزه پارامون- ترجمه: ع، شروه. نور و سایه- انتشارات یساولی- 1383

adaafzar.com

alibaba.com

barayand.com

aruna.r

daneshnameh.rosh.ir

database.irandoc.ir

forum.widel.com

howell-lighting.com

istgah.com

iran-ava.com

ircert.com

web.info.com

theledlight.com

ghafaseh.com

khareed.com

ketabkhaneh.i8.com

packplace.com

presentersuniversity.com

manakavirco.com

wisegeak.com


دانلود با لینک مستقیم


پروژه رشته کامپیوتر با موضوع نور در گرافیک. doc

دانلود پروژه پاورپوینت بادگیرها

اختصاصی از ژیکو دانلود پروژه پاورپوینت بادگیرها دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه پاورپوینت بادگیرها


دانلود پروژه پاورپوینت بادگیرها

دانلود پروژه پاورپوینت بادگیرها در 69 اسلاید

 

 

 

 

مقدمه:

-بادگیر ها سازه هایی هستند که از قرن ها پیش در مناطقی از خاور میانه و مصر با آب و هوای گرم و خشک و مر طوب ، به منظور جابه جایی و خنک کردن هوای ساختمان مورد استفاده قرار می گیرد
-ساخت بادگیر ها یکی از مهم ترین آثار و شاهکاری برجسته مهندسان و معماران هنرمند ایرانی است
کارکرداصلی بادگیرها
  1. هدایت هوای بیرون به داخل ساختمان
  2. خنک کردن نسبی و برقراری جریان طبیعی هوا در محل سکونت
  3. برقراری جریان هوا در آب انبارهای عمومی وخنک نگه داشتن آب در این انبارها
  4. بادگیر در ساختمانهایی که دسترسی کمی به باد دارد،می تواند باد بالای بام را به ساختمان بیاورد
  5. از خصوصیات دیگر بادگیر می توان از اثر دودکش نام برد. در مواقعی که باد جریان نداشته باشد، هوای گرم داخل بنا صعود می کند و از طریق بادگیر به خارج بنا منتقل می شود و بدین صورت کماکان یک جریان هوا در داخل ساختمان برقرار می گردد هرچند که شدت آن کمتر از مواقعی است که باد در محیط خارج جریان داشته باشد.
  6. در تعیین جهت ساختمان گاهی بین جهت تابش آفتاب ،جهت سایه و جهت باد تعارض و ناسازگاری وجود دارد .مزیت بادگیر در این است که می توان آن را در هر جهتی مورد استفاده قرار گیرد ،در حالی که جهت ساختمان ممکن است تحت تاثیر عوامل دیگر ،مانند آفتاب در زمستان قرار گیرد

نحوه کار بادگیر:نحوه کار بادگیر مبتنی بر دو اصل مهم است
1.سرد بودن هوای کویر در طول شب
2.سنگین بودن هوای سرد و تمایل آن به فرود آمدن

هوای سرد و سنگین به تدریج در طول شب وارد کانال بادگیر می گردد و آرام آرام سرما در تیغه ها و جداره های بادگیر ذخیره می شود

با گرم شدن تدریجی هوای بیرون و بخصوص در میان روز هوای جداره های بدنه بادگیر و تیغه های آن ،به دلیل سرد بودن این جداره هاو تیغه ها،سرد و سنگین شده ،رو به پایین می آیدو به سمت اتاق یا صفه حرکت می کند چنین تخلیه ای موجب می شود که در بالای کانال بادگیر ایجاد خلا گردد و لذا هوای گرم بیرون به ناچار وارد آن می شود

 این هوا با تماس جداره های سرد کانال و تیغه های آن سرد و سنگین می شود و رو به پایین حرکت می نماید و از دریچه پایین کانال خارج می گردد

این روند جابه جایی تا وقتی ادامه می یابد که سرمای ذخیره شده در جداره و تیغه ها به تدریج از بین برود با پایین رفتن تدریجی خورشید ،عملا کار بادگیر هم تمام میشود و مجددا روند ذخیره سازی سرما در شب تکرار می گردد...................................

دانلود پروژه پاورپوینت بادگیرها,دانلود پروژه بادگیرها,بادگیرها,دانلود بادگیرها,بادگیر,بادگیرهای ایران,بادگیرهای یزد,بادگیرهای جنوبی کشور,بادگیر آب انبارها

 

دانلود با لینک مستقیم


دانلود پروژه پاورپوینت بادگیرها

پروژه سیستم های تشخیص وسایل نقلیه. doc

اختصاصی از ژیکو پروژه سیستم های تشخیص وسایل نقلیه. doc دانلود با لینک مستقیم و پر سرعت .

پروژه سیستم های تشخیص وسایل نقلیه. doc


پروژه سیستم های تشخیص وسایل نقلیه. doc

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 80 صفحه

 

چکیده:

در سال های اخیر نظارت بر ترافیک و ایمنی وسایل نقلیه اعم از خودروها ، قطارها ، کامیون ها ،.... مورد توجه کمیته های حمل و نقل هوشمند قرار گرفته است.جهت بررسی سیستم های که ما را به اهداف فوق برساند ، نیاز به تشخیص وسیله ی نقلیه است تا بتوان پردازش ها و اقدامات لازم را به عمل آورد. لذا طبق تحقیقات به عمل آمده ، تجهیزات و روش های مختلفی ما را در این مقوله یاری می کنند و عبارتند از:

1-پردازش تصاویر بدست آمده توسط دوربین های تامین شده بدین منظور

سیستم های ویدئویی نصب شده بر سکو های هوایی

بررسی تصاویر جاده ای مبتنی برپارامترهای سه بعدی

سیستم های مبتنی بر مشخصه های محلی وسیله ی نقلیه در یک تصویر  

بکار گیری الگوریتم مبتنی بر استخراج ویژگی از طریق تغییر شکل های خاص

بکارگیری مدل سه بعدی توسعه داده شده بر پایه ی عناصر لبه ی وسیله نقلیه

سیستم های مبتنی بر یادگیری با ناظر (شامل یک سیستم کک راننده و یک سیستم وسیله نقلیه خود گردان)

تشخیص مبتنی بر تشخیص سیگنالهای ویژه ی ارسالی

از طریق روش های فوق ، به کمک یک بانک اطلاعاتی شامل چندین وسیله نقلیه نمونه که از تصاویر واقعی جاده استخراج شده اند ، آزمایشات ویژه و متنوعی بر روی وسایل نقلیه انجام می شود و کارایی هر روش جهت تشخیص صحیح در کوتاه ترین زمان ممکن ثبت می شود و مورد استفاده های بعدی قرار خواهد گرفت.

 

مقدمه:

هدف اصلی از تشخیص وسایل نقلیه این است که تعداد وسایل نقلیه ی مشاهده شده در هر نقطه جهت تخمین و پیش بینی جریان خودرو ها را در یک بازه ی ترافیکی، اندازه گیری نمائیم. بدین وسیله می توانیم امنیت و بهره وری ترافیک را بهبود بخشیم. سیستم های متنوعی که هر کدام کارایی ویژه ای دارند ، رسیدن به اهداف فوق را آسان گردانیده اند.

یکی از این سیستم ها، سیستم تشخیص وسایل نقلیه ی جاده ای در تصاویر دوربینی با نرخ فریمی پایین

می باشد. اجزای پایه ای وسایل نقلیه از تصاویر استخراج می شود و سپس توسط دسته کننده های برداری با نام «اس وی ام» با یکدیگر ترکیب می شوند. این قبیل سیستم ها ، مشکل اصلی تشخیص وسایل نقلیه را در تصاویر ایستا بر طرف نموده اند ، به علاوه از تکنیک های مبتنی بر نمونه های جمع آوری شده استفاده می کنند.

گاهی اوقات اجزایی از وسایل نقلیه در تصاویر قابل دسترسی نیستند و با موانعی مسدود شده اند. با کمک یک الگوریتم تشخیص وسایل نقلیه مبتنی بر مشخصات محلی روی تصاویر بدست آمده از طریق مادون قرمز، این مشکل حل می شوند.

سیستم های ویدئویی نصب شده بر روی سکوهای هوایی بر اساس انعطاف پذیری و تغییر پذیری آنها معرفی می شوند و توانایی دارند نواحی وسیعی را جهت تشخیص از روی تراکم زمانی و فضایی داده ی نمونه پوشش دهند. الگوریتمی بدین منظور طراحی شده است که از تصاویر سه جزئی استفاده می کند و پس از تشخیص وسیله ی نقلیه در اولین تصویر، آن را در دو تصویر بعدی تطبیق می دهد و دید گسترده ای را فراهم می آورد.

همچنین در راستای عملیات ردیابی و مکان یابی وسایل نقلیه ، نیاز به تشخیص آن ها داریم. هدف این است که یک شی (وسیله ی نقلیه ) با یافتن پارامترهای سه بعدی از موانع مشاهده شده در تصاویر جاده ای تشخیص داده شود. نمونه ای دیگر از این قبیل سیستم ها ، سیستم های مبتنی بر یادگیری با ناظر است که از طریق یک سیستم کمک راننده ویک سیستم وسیله نقلیه خودگردان، توسعه یافته است و در این سیستم تابعی برای تشخیص محیط جاده و وسایل نقلیه وجود دارد و تعداد کمی از تصاویر وسایل نقلیه در حال حرکت را به کار می گیرد.

سیستم های دیگری وجود دارند که از طریق الگوریتم مبتنی بر نمونه های ساختاری که از تکنیک های استخراجی و بدست آمده از مشخصات ویژه ی تصویر وسیله ی نقلیه عمل می کند، استخراج ویژگی می نماید. این ویژگی ها توسط تغییر شکل های فوریه ای، تغییرموج ضربه ای و تغییر شکل منحنی ضربه ای به دست  می آید. عملیات روی یک مجموعه داده انجام می شود.

تشخیص وسایل نقلیه از طریق تکنیک هایی که مبتنی بر مدل های ایجاد شده از اشیاء سه بعدی است ، نیز امکان پذیر می باشد و بوسیله ی نقاط ، خطوط و سطوح ویژه ی وسیله نقلیه و مدلسازی آنها با ساختارهای مکان نگر عمل می کند.

آخرین نوع سیستم های بررسی شده ، سیستم هایی هستند که با کمک یک ناظر و تعدادی شرکت کننده ، از طریق یکسری آزمایشات ، در یک محیط شبیه سازی شده از جاده و از طریق سیگنال های ارسالی عملیات تشخیص را انجام می دهند.

 

فهرست مطالب:

مقدمه

فصل یکم- تشخیص وسایل نقلیه ی جاده ای در تصاویر دوربینی

نواحی کاندید شده مورد نظر

تشخیص و ردیابی خط

وسایل نقلیه مورد نظر

تشخیص وسایل نقلیه

فصل دوم - سیستم تشخیص وسایل نقلیه مبتنی بر ویژگی های محلی با استفاده از برد بینایی موازی

الگوریتم تشخیص

2-1-1- تکنیک پنجره مشخصه

2-1-2- تکنیک فضای مشخصه

2-1-3- انتخاب مشخصه ی ویژگی

2-1-4- عملیات انتخاب

الگوریتم بردار تدریجی

آزمایشات تشخیص وسایل نقلیه

2-3-1- وسایل نقلیه همراه با موانع جاده ای

2-3-2- تشخیص وسایل نقلیه

فصل سوم - تشخیص اتوماتیک وسایل نقلیه در توالی از تصاویر هوایی با نرخ فریمی پایین

3-1- نظارت ترافیک

3-2- خط مشی کلی

3-3- تشخیص وسیله نقلیه

3-3-1- روند تشخیص

3-2-2- پارامترها ی وسیله نقلیه

3-3-3- تطبیق

3-4- ارزیابی تشخیص

3-4-1- طرح ارزیابی

3-4-2- اجرای تشخیص و ردیابی

3-4-3-هماهنگی حرکتی

3-4-4- مقدار نهایی

3-5- بررسی الگوریتم

فصل چهارم - تشخیص و مکان یابی وسایل نقلیه جاده ای به طور همزمان بوسیله مدلی مبتنی بر بینایی متمرکز

4-1-2- پردازش مراحل تشخیص و ردیابی

4-1-3- شناسایی جهت تشخیص و توابع هزینه ی آن

4-1-4 - ارزیابی الگوریتم

4-2- کاربرد تشخیص و مکان یابی وسایل نقلیه ی جاده ای

4-2-1- مدل سازی شی در دنیای سه بعدی

4-2-2- فازهای یادگیری

4-2-3- تشخیص و توابع هزینه

4-2-4- مکان یابی وسایل نقلیه

4-2-5- ردیابی وسایل نقلیه

فصل پنجم - تشخیص وسایل نقلیه با استفاده از یادگیری با ناظر

طرح کلی مدل پیشنهادی

بهبود تابع تشخیص نمایی اصلاح شده (ام کیو دی اف)

آزمایشات انجام شده

فصل ششم- تشخیص وسایل نقلیه مبتنی بر تغییر شکل های فوریه ، موج ضربه ای کوچک و منحنی ضربه ای

6-1- استخراج ویژگی

6-1-1- تغییر شکل یافتن فوریه

6-1-2-تغییر شکل یافتن از طریق موج ضربه ای کوچک

6-1-3- تغییر شکل یافتن از طریق منحنی ضربه ای

6-1-4- طبقه بندی

6-2- نتایج آزمایشات

6-2-1-آنالیز تطبیقی توصیف گر فوریه ای، موج ضربه ای و منحنی ضربه ای

6-2-1-1- تغییر شکل فوریه ای

6-2-1-2- تغییر شکل موج ضربه ای

6-2-1-3- تغییر شکل منحنی ضربه ای

6-2-2- کاهش ابعاد بردارهای مشخصه(عوامل مشترک فوریه ،موج ضربه ای ومنحنی ضربه ای)

فصل هفتم - مدل تغییر پذیر عمومی برای تشخیص وسایل نقلیه

مدل پارامتریزه شده

جمع آوری اطلاعات

پایداری ساختار بهبود یافته

تجزیه و تحلیل اجزای اصلی

فصل هشتم - تشخیص واگن های ریلی در طرح های بازتابشی

8-1- تشخیص سیگنالی

8-1-1- روش کار

8-1-3- توضیح سناریو

8-1-4- روش انجام آزمایش

8-2- تئوری تشخیص سیگنالی

8-3- آزمایش فاصله ی تشخیص

8-3- 1 روش کار

8-3-2- طراحی آزمایش

8-3-3- توضیح سناریو

8-3-4- روش انجام آزمایش

نیتجه گیری

منابع و مآخذ

 

فهرست اشکال:

شکل 1- 1- نمونه های تشخیص خطی در توالی از تصاویر

شکل 1- 2- ایجاد نواحی کاندیده ی مورد نظر در توالی از تصاویر

شکل 1-3- تجزیه ی یک ناحیه ی کاندیده به 3 زیر ناحیه 

شکل 1-4- ورودی نرمالسازی شده در دسته بندی 

شکل 1-5- ساختار کلی 2 مرحله از دسته کننده اس وی ام 

شکل 1- 6- تشخیص وسایل نقلیه در توالی از تصاویر 

شکل 2- 1- تکنیک پنجره مشخصه 

شکل 2-2- تصاویر با زاویه دید بالا در آزمایشات 

شکل2 -3- مدلهایی از دو وسیله نقلیه( تصاویر آموزشی ، مشخصه های محلی ،مشخصه های کد ،مجموعه ای از کدهای مشخصه)

شکل 2-4- نقاط مشخصه در 9 تصویر آموزشی و مجموعه کد مشخصه

شکل 2- 5- 9 تصویر آموزشی

شکل 2-6- نقاط مشخصه در 9 تصویر آموزشی و مجموعه کد مشخصه

شکل 2-7- نمونه های از تشخیص

شکل3- 1- نتایجی از استخراج خطوط

شکل 3-2- نتایجی از تشخیص حبابی

شکل 3-3- نمونه هایی برای حرکات ممکن و ناممکن خودرو  

شکل3-4- رفتار صف گونه ی وسایل نقلیه

شکل3- 5- (a اولین تصویر تشخیص خودرو ، (b دومین تصویر با دو تطبیق M12 برای C1

(c سومین تصویر با سه تطبیق M23 برای هر C2 ، (d چهارمین تصویر با تطبیق های M13

شکل3-6- تخمینی از مسیر حرکت خودرو

شکل3- 7- قاعده کلی از تصویر مبتنی بر روش تطبیقی

شکل3- 8- نمودار پردازش ارزیابی تطبیقی برای یک خودرو

شکل 3- 9- نتایج تشخیص خودرو در تصویر آزمایشی: (a تشخیص ویایل نقلیه در اولین تصویر ،

(b خودروهای وابسته در دومین تصویر c )موقعیت های تشخیص نهایی در سومین تصویر

شکل 4-1- نمودار سازمانی ساده شده از پردازش تشخیص

شکل 4-2- 18 مشخصه تطبیقی Fi مدل وسیله نقلیه

شکل4-3- سیستم مختصاتی جهان ، دوربین ، شیء

شکل 4- 4- تشخیص وسیله نقلیه سطح بالا

شکل4-5- فاصله تقریبی وسایل نقلیه

شکل 4-6- موقعیت جانبی وسایل نقلیه

شکل 4-7 نمونه هایی از تشخیص و مکان یابی وسایل نقلیه

شکل 5-1- طرح کلی مدل پیشنهادی تشخیص وسایل نقلیه

شکل 5- 2-  نمونه هایی از مناظر جاده

شکل 5-3- نرخ طبقه بندی

شکل 1-6- مقایسه ی کارایی تقریب منحنی ضربه ای و موج ضربه ای

شکل 2-6- یک نمونه از تغییر شکل منحنی ضربه ای دیجیتال از تصویر پژو 206

شکل7- 1- نمونه هایی از مدل 29 پارامتری

شکل7- 2- منظره آزمایشی برای مجموعه داده ی نمونه

شکل3-7- 8 زیر مدل

شکل 7-4- اولین و آخرین فریم از توالی استفاده شده برای آزمایش پایداری ساختار تکنیک بهبود یافته

شکل 7-5- درصد واریانس در 29 پارامتر تغییرپذیر

شکل7-6- مدل تغییرپذیری خودرو

شکل8-1- طرح های بازتابشی واگن باربری

شکل8-2- طرح های بازتابشی واگن باربری روباز (طرح کامیون)

شکل 8-3- طرح سناریوی پایه

شکل8-4- ابعاد وسیله ی نقلیه

شکل8-5- میدان دید پیشروی ناظر ساکن

شکل8-6- چهار خروجی تئوری تشخیص سیگنالی

شکل8-7- مسیر شبیه ساز

شکل8-8- میدان دید پیشروی راننده

 

منابع ومأخذ:

[1] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in images by components,” IEEE Transactions on Pattern Analisis and Machine Intelligence, Vol. 23, No. 4, April 2001.

[2] A. Shashua, Y. Gdalyahu, and G. Hayun, “Pedestrian detection for driving assistance systems: single-frame classification and system level performance,” In Proc. IEEE Intelligent Vehicles Symposium, pp. 1-6, Parma, Italy, June 14-17, 2004.

[3] Carroll, A., Multer, J., Williams, D. and M. Yaffee, (1999). Safety of Highway-Railroad GradeCrossings: Freight Car Reflectorization. Report No. DOT/FRA/ORD-98/11, Washington,DC: U.S. Department of Transportation, Federal Railroad Administration.

[4] C. Papageorgiou and T. Poggio, “A trainable system for object detection”. Intl J.Computer Vision, Vol. 38, No. 1, pp. 15-33, 2000.

[5] Chapuis R. Chausse F., Trujillo N and Naranjo M. Object recognition by model based focused vision. 2004.

[6] E. D. Dickmanns and B. D. Mysliwetz, “Recursive 3-D Road and Relative Ego-State Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, February 1992.

[7] Egan, J.P. (1975). Signal Detection Theory and ROC Analysis. New York: Academic Press.

[8] E. Cand Cand`es and D. Donoho, “New tight frames of curvelets and optimal representations of objects with c2singularities,” Tech. Rep., Department of Statistics, Stanford

University, USA, November 2002.

[9] E. Cand Cand`es and L. Demanet, “The curvelet representation of wave propagators is optimally sparse,” Tech.Rep., Applied and Computational Mathematics, California Institute of Technology, USA, 2004. [18] I. Guyon, S. Gunn, M. Nikravesh , Lofti A. Zadeh ,

Feature Extraction: Foundations and Applications, (Studies in Fuzziness and Soft Computing) , Springer, 2006.

[10] Federal Highway Administration. (1988). Manual on Uniform Traffic Control Devices for Streetsand Highways. Washington, DC: U.S. Department of Transportation.

[11] Federal Railroad Administration, Office of Safety. Highway-Rail Crossing Accident/Incident and Inventory Bulletin. (1996). Washington, DC: U.S. Department of Transportation.

[12] Federal Railroad Administration, Office of Safety. Highway-Rail Crossing Accident/Incident and Inventory Bulletin #60. (1994). Washington, DC: U.S. Department of Transportation.

[13] Ford, R.E., Richards, S.H., and J.C. Hungerford, (1998). Evaluation of Retroreflective Markings To Increase Rail Car Conspicuity. Project Memorandum. No. DOT-VNTSC-RR897-PM98-22. U.S. Department of Transportation , Volpe National Transportation Center.

Grier, J.B. (1971). Nonparametric Indexes for Sensitivity and Bias: Computing Formulas. Psychological Bulletin, 75 (6), 424-429.

[14] F. Thomanek, E.D. Dickmanns and D. Dickmanns, "Multiple object recognition and

scene interpretation for autonomous road vehicle guidance", Proceedings of the IEEE

Intelligent Vehicles 1994 Symposium, pp.23 1-236, 1994.

[15] Federal Highway Administration. (1988). Manual on Uniform Traffic Control Devices for Streetsand Highways. Washington, DC: U.S. Department of Transportation.

[16] Federal Railroad Administration, Office of Safety. Highway-Rail Crossing Accident/Incident and Inventory Bulletin. (1996). Washington, DC: U.S. Department of Transportation.

[17] Federal Railroad Administration, Office of Safety. Highway-Rail Crossing Accident/Incident and Inventory Bulletin #60. (1994). Washington, DC: U.S. Department of Transportation.

[18] Ford, R.E., Richards, S.H., and J.C. Hungerford, (1998). Evaluation of Retroreflective Markings To Increase Rail Car Conspicuity. Project Memorandum. No.

DOT-VNTSC-RR897-PM98-22. U.S. Department of Transportation, Volpe National Transportation Center. Grier, J.B. (1971). Nonparametric Indexes for Sensitivity and Bias: Computing Formulas. Psychological Bulletin, 75 (6), 424-429.

[19] Green, D.M. and J. A. Swets, (1988). Signal Detection Theory and Psychophysics.

[20] G. Grubb, A. Zelinsky, L. Nilsson, and M. Rilbe, “3D Vision sensing for improved pedestrian safety,” In Proc. IEEE Intelligent Vehicles Symposium, pp. 19-24, Parma, Italy, June 14-17, 2004.

[21] G. P. Stein, O. Mano, and A. Shashua, “Vision-based ACC with a single camera: bounds on range and range rate accuracy”. In Proc.Int. Conf. Intelligent Vehicles, Versailles, France, June 2002.

[22] H.Murase and S.K. Nayar (1995) “Visual Learning and Recognition of 3-D Objects from Appearance," International Conference on Computer Vision.

[23] Hinz, S. (2004): Detection of vehicles and vehicle queues in high resolution aerial images. Photogrammetrie-Fernerkundung-Geoinformation, 3/04: 201-213.

[24] Hinz, S., Baumgartner, A. (2003): Automatic Extraction of Urban Road Nets from Multi-View Aerial Imagery. ISPRS Journal of Photogrammetry and Remote Sensing 58/1-2: 83–98.

[25] J. C. Christopher, “A Tutorial on Support Vector Machines for Pattern Recognition”. Data Mining and Knowledge Discovery, No. 2, pp. 121-167. Kluwer Academic Publishers.1. 1998.

[26] Keiji Yanai and Keiji Deguchi. A multi-resolution image understanding system based on multi-agent architecture for high-resolution images. 2001.

[27] K. Ohba and K. Ikeuch (1997) "Detectability, Uniqueness, and Reliability of Eigen-Windows for Stable Verifications of Partially Occluded," IEEE Pattern

Analysis and Machine Intelligence, vol.19, No.9, pp.1043-1048.

[28] K.Kagesawa, S.Ueno et al (1999) "Vehicle Recognition in Infra-red Images Using Parallel Vision Board", ITSWC '99, Toronto.

[29] K.Kagesawa, A.Nakamura et al(2000) “Vehicle Type Clasification in Infra-red Image Using Parallel Vision Board”, ITSWC 2000, Torino.

[30] Lauer, A.R., and V.R. Suhr, (1956). “An Experimental Study of Four Methods of Reflectorizing Railway Boxcars. ” Highway Research Board Bulletin, 146, 45-50.

[31] Lebowitz , H.W., Owens, D.A., and R.A. Tyrrell, (1998). The Assured Clear Distance Ahead Rule: Implications for Nighttime Traffic Safety and the Law. Accident Analysis and

Prevention, 30 (1), 93-99.

[32] Lachaise, M. (2005): Automatic detection of vehicles and velocities in aerial digital image series. Diploma Thesis, Universitee Lyon.

[33] Meffert B, Blaschek R, Knauer U, Reulke R, Schischmanow A, Winkler F (2005): Monitoring traffic by optical sensors. Proc. of Second International Conference on Intelligent Computing and Information Systems (ICICIS 2005): 9-14.

[34] M. Papageorgiou , C. Oren and T. Poggio. A general framework for object detection. Proc. Int. Conf. Computer Vision , 1998.

[35] Michael Jones Paul Viola. Rapid object detection using a boosted cascade of simple features. Conference on Computer Vision and Pattern Recognition , 2001.

[36] M. Betke, E. Haritaoglu and L. S. Davis, "Multiple vehicle detection and tracking in

hard real-time", Proceedings of the IEEE Intelligent Vehicles 1996 Symposium, pp.35 1-356, 1996.

[37] McGinnis, R.G. (1979). Reflectorization of Railroad Rolling Stock. Transportation Research Record, 737, 31-43.

[38] Olson, P.L. (1988). Minimum Requirements for Adequate Nighttime Conspicuity of Highway Signs. Report No. UMTRI-88-8. NTIS No. PB88-179841-HDM. St. Paul: Minnesota Mining and Mfg. Co.

[39] R. Aufr`ere, R. Chapuis and F. Chausse. Amodel-driven approach for real-time road recognition. Machine Vision and Applications , 2001.

[40] Trujillo N. Bayro-Corrochano, E. and Naranjo M. The role of the quaternion fourier descriptors for preprocessing in neuralcomputing. 2003.

[41] Takeo Schneiderman, Henry. Kanade. Object detection using the statistics of parts. International Journal of Computer Vision , 2002.

[42] T. Ito and K. Yamada, "Preceding vehicle road lanes recognition methods for RCAS. using vision system", Proceedings of the IEEE Intelligent Vehicles 1994 Symposium,

85-90 , 1994.

[43] T.Kato and Y.Ninomiya, "An approach to vehicle recognition using supervised

learning", Proceedings of the 4th Symposium on Sensing via Image Information (SII'98),

279-284, 1998 (in Japanese).

[44] Tan, T. N. Sullivan, G. D. and Baker, K. D. Fast Vehicle Localisation and Recognition Without Line Extraction and Matching, Proc. 5th British Machine Vision Conference, pp 85-94, 1994.

[45] Ulrich, M., 2003. Hierarchical Real-Time Recognition of Compound Objects in Images. Dissertation, German Geodetic Commission (DGK), Vol. C. Dubuisson-Jolly, M.-P., Lakshmanan, S. and Jain, A. (1996): Vehicle Segmentation and Classification Using Deformable Templates. IEEE Trans on Pattern Analysis and Machine Intelligence 18 (3): 293–308.

[46] Worrall, A. D., Baker, K. D. and Sullivan, G. D. Model-based perspective inversion, Image and Vision Computing Journal, 7(1), pp 17-23, 1989.

[47] Worrall, A.D., Sullivan, G. D. and Baker, K. D. Advances in Model-based Traffic

Vision , Proc. 4th British Machine Vision Conference , pp 559-568, 1993.


دانلود با لینک مستقیم


پروژه سیستم های تشخیص وسایل نقلیه. doc

کد کامل برنامه های آردینو DUE برای ربات متحرک پروژه درس مکاترونیک 2 با استفاده از سنسور های التراسونیک

اختصاصی از ژیکو کد کامل برنامه های آردینو DUE برای ربات متحرک پروژه درس مکاترونیک 2 با استفاده از سنسور های التراسونیک دانلود با لینک مستقیم و پر سرعت .

کد کامل برنامه های آردینو DUE برای ربات متحرک پروژه درس مکاترونیک 2 با استفاده از سنسور های التراسونیک


کد کامل برنامه های آردینو DUE برای ربات متحرک پروژه درس مکاترونیک 2 با استفاده از سنسور های التراسونیک

کد کامل برنامه های آردینو DUE برای obsticle ovoidance, ادومتری , go to goal , حرکت رو مسیر مثلث و کمان ربات متحرک پروژه درس مکاترونیک 2 با استفاده از سنسور های التراسونیک - کل برنامه با ربات متحرک تست شده و جواب داده می دهد فقط برای موتور سروو مورد استفاده تنظیمات عددی در داخل برنامه انجام شود.


دانلود با لینک مستقیم


کد کامل برنامه های آردینو DUE برای ربات متحرک پروژه درس مکاترونیک 2 با استفاده از سنسور های التراسونیک