ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد تاریخچه هندسه

اختصاصی از ژیکو مقاله در مورد تاریخچه هندسه دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد تاریخچه هندسه


مقاله در مورد تاریخچه هندسه

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه9

تاریخچه هندسه

واژه انگلیسی Geometry ( هندسه ) از زبان یونانی ریشه گرفته است. این کلمه از دو کلمه «جئو»ٍ به معنای زمین و «متری» به معنای اندازه گیری تشکیل شده است.بنابراین هندسه اندازه گیری زمین است. مصریان اولیه نخستین کسانی بودند که اصول هندسه را کشف کردند. هر سال رودخانة نیل طغیان نموده و نواحی اطراف رودخانه راسیل فرا می‌گرفت.
این عمل تمام علایم مرزی میان تقسیمات مختلف را از بین می‌برد و لازم می‌شد دوباره هر کس زمین خود را اندازه‌گیری و مرزبندی نماید. آنها روشی از علامت‌گذاری زمین‌ها با کمک پایه‌ها و طناب‌ها اختراع کردند. آنها پایه‌‌ای را در نقطه‌ای مناسب در زمین فرو می‌کردند، پایه دیگری در جایی دیگر نصب می‌شد و دو پایه توسط طنابی که مرز را مشخص می‌ساخت به یکدیگر متصل می‌‌شدند.با دو پایه دیگر زمین محصور شده ، محلی برای کشت یا ساختمان سازی‌ می‌گشت.
با برآمدن یونانیان اطلاعات ریاضی قدم به مرحله ای علمی گذاشت.در آغاز تمام اصول هندسی ابتدایی بود. اما در سال 600 قبل از میلاد مسیح ، یک آموزگار یونانی به نام تالس، اصول هندسی را از لحاظ علمی ثابت کرد.
تالس
دلایل ثبوت برخی از فرضیه‌ها را کشف کرد و آغازگر هندسة تشریحی بود. اما دانشمندی به نام اقلیدس که در اسکندریه زندگی‌ می‌کرد ، هندسه را به صورت یک علم بیان نمود.
وی حدود سال 300 قبل از میلاد مسیح ، تمام نتایج هندسی را که تا به حال شناخته بود ، گرد آورد و آنها را به طور منظم ، در یک مجموعة 13 جلدی قرار داد. این کتابها که اصول هندسه نام داشتند ، به مدت 2 هزار سال در سراسر دنیا برای مطالعه هندسه به کار می رفتند.
براساس این قوانین ، هندسه اقلیدسی تکامل یافت. هر چه زمان می گذشت ، شاخه های دیگری از هندسه توسط ریاضیدانان مختلف ، توسعه می یافت.
امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسة تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه می کنیم.
خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند.قبل از اقلیدس، فیثاغورث( 572-500 ق.م ) و زنون ( 490 ق.م. ) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.
در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی معمولی بابلی ها را برای پیرامون دایره پذیرفت.به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را به 60 قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوس‌ها را به دست می داد و این قدیمی ترین جدول مثلثاتی است که تاکنون شناخته شده است.
بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در قرن پنجم میلادی آپاستامبا، در قرن ششم ، آریاب هاتا ، در قرن هفتم ،براهماگوپتا و در قرن نهم ،بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.


دانلود با لینک مستقیم


مقاله در مورد تاریخچه هندسه

دانلود تشابه دوشکل هندسی

اختصاصی از ژیکو دانلود تشابه دوشکل هندسی دانلود با لینک مستقیم و پر سرعت .

دانلود تشابه دوشکل هندسی


دانلود تشابه دوشکل هندسی

تشابه

تشابه به معنی به هم مانند بودن و به یکدیگر شبیه بودن می باشد. دو تصویر که از یک منظره تهیه شده اند ولی از لحاظ اندازه ها با هم تفاوت دارند, دو تصویر مشابهند.

 

پانتوگراف

 نام وسیله ای است که برای رسم شکلهای متشابه از آن استفاده می شود.

 

نماد تشابه: برای نمایش تشابه دو شکل از نماد ~ استفاده می شود.

اگر شکل Aو'A متشابه باشند, می نویسیم:'A~A

 

نسبت تشابه: عددی است که تغییرات بزرگی یا کوچکی اندازه های اضلاع دو شکل متشابه را نشان می دهد. این عدد همان نسبت اجزای متناظر در دو شکل متشابه می باشد. در تصویر بالا مشاهده می کنیم که هر یک از اضلاع شکل A دو برابر شده اند, عدد 2 یا را نسبت تشابه این دو شکل می گوییم.

 

کاربردهای تشابه: نقشه هر مکان با آن مکان متشابه است. ماکت یک ساختمان با آن ساختمان متشابه است. مهندسین راه و ساختمان محاسبات لازم را برای ساختن یک مکان بروی ماکت آن انجام می دهند و پس از مشخص شدن تمامی جزئیات اقدام به ساخت آن می کنند. امروزه متخصصان علم شبیه سازی علوم پزشکی, در کشور عزیزمان ایران به پیشرفتهای قابل توجهی دست یافته اند به طوریکه بعضی از اعضای بدن انسان را در محیط های شبیه سازی شده, تولید می کنند. در علوم کامپیوتر نرم افزارهای طراحی شده قادرند تصاویر قدیمی را بازسازی کرده و در اندازه های مختلف و به تعداد دلخواه تکثیر کنند. در ریاضیات شرایط لازم برای تشابه دوچند ضلعی را بررسی کرده و سپس به کمک نسبت تشابه مقادیر نامعلوم را محاسبه می کنیم.تناسب اضلاع دو چند ضلعی متشابه به ما کمک می کند روابط زیبایی را در اشکال هندسی به دست آوریم این رابطه های مهم در شکل های هندسی هستند که به ایجاد یک نرم افزار, ایجاد یک محیط شبیه سازی شده, رسم نقشه یک مکان, ساخت دقیق یک ماکت ساختمان و ... کمک می کنند.

 

 تشابه دو n ضلعی: دو n ضلعی در صورتی متشابه اند که:

1- زاویه هایشان دو به دو مساوی باشند.

2- اضلاعشان متناسب باشند.

 

فایل ورد 6 ص


دانلود با لینک مستقیم


دانلود تشابه دوشکل هندسی

دانلود پاورپوینت هندسه در معماری اسلامی

اختصاصی از ژیکو دانلود پاورپوینت هندسه در معماری اسلامی دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت هندسه در معماری اسلامی


دانلود پاورپوینت هندسه در معماری اسلامی

جهان در تفکر اسلامى جلوه و مشکات انوار الهى است و حاصل فیض مقدس نقاش ازلى، و هر ذره اى و هر موجودى از موجودات جهان و هر نقش و نگارى مظهر اسمى از اسماء الهیه است و در میان موجودات، انسان مظهر جمیع اسماء و صفات و گزیده عالم است. هنرمند در پرتو چنین تفکرى، در مقام انسانى است که به صورت و دیدار و حقیقت اشیاء در وراى عوارض و ظواهر مى‌پردازد.

            ازاینجا صورت خیالى هنر اسلامى متکفل محاکات و ابداع نور جمال ازلى حق تعالى است، نورى که جهان در آن آشکار مى شود و حسن و جمال او را چون آیینه جلوه مى‌دهد.

در حقیقت بود این جهانى، رجوع به این حسن و جمال علوى دارد و عالم فانى در حدذات خویش، نمودى و خیالى بیش نیست:

هستى عالم نمودى بیش نیست    سر او جز در درون خویش نیست

            در نظر هنرمند مسلمان به قول غزالى «عالم علوى حسن و جمال است و اصل حسن و جمال تناسب و هر چه متناسب است، نمودگارى است از جمال آن عالم، چه هر جمال و حسن و تناسب که در این عالم محسوس است، همه ثمرات جمال و حسن آن عالم است. پس آواز خوش موزون و صورت زیباى متناسب هم شباهتى دارد از عجایب آن عالم

به عبارت دیگر، حقیقت از عالم غیب براى هنرمند متجلى است و به همین جهت، هنر اسلامى را عارى از خاصیت مادى طبیعت مىکند. او در نقوش قالى، کاشى، تذهیب و حتى نقاشى، که به نحوى به جهت جاذبهی خاص خود مانع حضور و قرب است، نمایش عالم ملکوت و مثال را که عارى از خصوصیات زمان و مکان و فضاى طبیعى است مىبیند

جلوهی توحید و کثرت هنری

            نکتهی اساسى در هنر اسلامى که باید بدان توجه کرد عبارت است از توحید. اولین آثار این تلقى، تفکر تنزیهى و توجه عمیق به مراتب تجلیات است که آن را از دیگر هنرهاى دینى متمایز مىسازد. زیرا هنرمند مسلمان از کثرات مىگذرد تا به وحدت نایل آید. انتخاب نقوش هندسى و اسلیمى و خطایى و کمترین استفاده از نقوش انسانى و وحدت این نقوش در یک نقطه، تأکیدى بر این اساس است:

ندیم و مطرب و ساقى همه اوست                خیال آب و گل در ره بهانه

شامل 80 اسلاید powerpoint


دانلود با لینک مستقیم


دانلود پاورپوینت هندسه در معماری اسلامی

تحقیق در مورد تاریخچه هندسه

اختصاصی از ژیکو تحقیق در مورد تاریخچه هندسه دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد تاریخچه هندسه


تحقیق در مورد تاریخچه هندسه

لینک پرداخت و دانلود *پایین صفحه*

 

فرمت فایل : Word(قابل ویرایش و آماده پرینت)

 

تعداد صفحه : 9

 

فهرست مطالب:

 

تاریخچه هندسه

برسی و اثبات پنجمین اصل موضوع هندسه اقلیدسی

اشکالات وارد بر هندسه اقلیدسی :

درک اصل توازی در هندسه اقلیدسی :

اینک این سوال مطرح میشود که چرا ما باید این اصل پنجم را ثابت کنیم ؟

 

تاریخچه هندسه

واژه انگلیسی Geometry ( هندسه ) از زبان یونانی ریشه گرفته است. این کلمه از دو کلمه «جئو»ٍ به معنای زمین و «متری» به معنای اندازه گیری تشکیل شده است.بنابراین هندسه اندازه گیری زمین است. مصریان اولیه نخستین کسانی بودند که اصول هندسه را کشف کردند. هر سال رودخانة نیل طغیان نموده و نواحی اطراف رودخانه راسیل فرا می‌گرفت.
این عمل تمام علایم مرزی میان تقسیمات مختلف را از بین می‌برد و لازم می‌شد دوباره هر کس زمین خود را اندازه‌گیری و مرزبندی نماید. آنها روشی از علامت‌گذاری زمین‌ها با کمک پایه‌ها و طناب‌ها اختراع کردند. آنها پایه‌‌ای را در نقطه‌ای مناسب در زمین فرو می‌کردند، پایه دیگری در جایی دیگر نصب می‌شد و دو پایه توسط طنابی که مرز را مشخص می‌ساخت به یکدیگر متصل می‌‌شدند.با دو پایه دیگر زمین محصور شده ، محلی برای کشت یا ساختمان سازی‌ می‌گشت.
با برآمدن یونانیان اطلاعات ریاضی قدم به مرحله ای علمی گذاشت.در آغاز تمام اصول هندسی ابتدایی بود. اما در سال 600 قبل از میلاد مسیح ، یک آموزگار یونانی به نام تالس، اصول هندسی را از لحاظ علمی ثابت کرد.
تالس
دلایل ثبوت برخی از فرضیه‌ها را کشف کرد و آغازگر هندسة تشریحی بود. اما دانشمندی به نام اقلیدس که در اسکندریه زندگی‌ می‌کرد ، هندسه را به صورت یک علم بیان نمود.
وی حدود سال 300 قبل از میلاد مسیح ، تمام نتایج هندسی را که تا به حال شناخته بود ، گرد آورد و آنها را به طور منظم ، در یک مجموعة 13 جلدی قرار داد. این کتابها که اصول هندسه نام داشتند ، به مدت 2 هزار سال در سراسر دنیا برای مطالعه هندسه به کار می رفتند.
براساس این قوانین ، هندسه اقلیدسی تکامل یافت. هر چه زمان می گذشت ، شاخه های دیگری از هندسه توسط ریاضیدانان مختلف ، توسعه می یافت.
امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسة تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه می کنیم.
خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند.قبل از اقلیدس، فیثاغورث( 572-500 ق.م ) و زنون ( 490 ق.م. ) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.
در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی معمولی بابلی ها را برای پیرامون دایره پذیرفت.به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را به 60 قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوس‌ها را به دست می داد و این قدیمی ترین جدول مثلثاتی است که تاکنون شناخته شده است.
بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در قرن پنجم میلادی آپاستامبا، در قرن ششم ، آریاب هاتا ، در قرن هفتم ،براهماگوپتا و در قرن نهم ،بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.

هندسه تصویری :

فرض کنید دو صفحه و در فضا داریم که لزوماً موازی یکدیگر نیستند. در این صورت، برای به دست آوردن تصویر مرکزی به روی از مرکز مفروض که در یا واقع نیست، می‌توان تصویر هر نقطه از را نقطه‌ای چون از تعریف کرد که و روی یک خط راست گذرنده از قرار داشته باشند.

همچنین می‌توان تصویر موازی را به این طریق به دست آورد که خطهای تصویر کننده را موازی در نظر بگیریم. همین‌طور تصویر یک خط در واقع صفحه به روی خط دیگری چون در هم به صورت تصویر مرکزی از یک نقطه ، و هم به صورت تصویر موازی تعریف می‌شود. تبدیل یک شکل به شکل دیگر از طریق تصویر موازی یا مرکزی و یا به وسیله رشته‌ای متناهی از این تصویر کردنها، تبدیل تصویری نامیده می‌شود.

هندسه تصویری صفحه یا خط عبارت از مجموعه آن گزاره‌های هندسی است که بر اثر تبدیلهای تصویری دلخواه شکلها تغییری در صدق آنها پدید نمی‌آید. در مقابل، هندسه متری به مجموعه‌ای از گزاره‌ها، راجعه به اندازه‌های شکلها، اطلاق می‌شود که فقط تحت حرکتهای صلب شکلها صادق می‌مانند.

..........................تصور کردن از یک نقطه......................................................................تصویرگری موازی


به بعضی از ویژگیهای تصویری فوراً می‌توان پی‌برد. تصویر هر نقطه، یک نقطه است. به علاوه، تصویر هر خط راست، یک خط راست است زیرا اگر خط واقع در به روی صفحه تصویر شود، تقاطع با صفحه گذرنده از و ، خط راست خواهد بود. اگر نقطه و خط راست ملازم هم باشند. آنگاه پس از هر عمل تصویر، نقطه متناظر و خط متناظر نیز ملازم هم خواهند بود. پس ملازمت یک نقطه و یک خط تحت گروه تصویری ناورداست. این واقعیت، پیامدهای ساده ولی مهمی دارد. اگر سه یا تعداد بیشتری نقطه همخط باشند، یعنی ملازم با یک خط راست باشند، تصویرهای آنها نیز همخط خواهند بود. همچنین اگر سه یا تعداد بیشتری خط راست همرس باشند یعنی ملازم با یک نقطه باشند، تصویرهای آنها نیز خطهای راست همرسی خواهند بود. در حالی که این ویژگیهای ساده – ملازمت،‌همخطی‌، و همرسی – ویژگیهای تصویری (یعنی ویژگیهای ناوردا تحت عمل تصویر) هستند، اندازه‌های طول و زاویه، و نسبتهای چنین اندازه‌هایی، عموماً بر اثر تصویر کردن تغییر می‌کنند. مثلثهای متساوی‌الساقین یا متساوی‌الاضلاع را می‌توان به مثلثهای مختلف‌الاضلاع تصویر کرد. پس اگر چه «مثلث» مفهومی متعلق به هندسه تصویری است، «مثلث متساوی‌الاضلاع» چنین نیست و فقط به هندسه متری تعلق دارد.

برسی و اثبات پنجمین اصل موضوع هندسه اقلیدسی

 

همانطور که میدانیم در هندسه اقلیدسی یکسری از مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنج اصل موضوع آنرا به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج می‌کردند . اما اصل پنجم چندان بدیهی به‌نظر نمی‌رسید . بنابر اصل پنجم اقلیدس از یک نقطه خارج از یک خط ، یک خط و تنها یک خط می‌توان موازی با خط مفروض رسم کرد . برخی از ریاضیدانان مدعی بودند که این اصل را می‌توان به‌عنوان یک قضیه ثابت کرد . در این راه بسیاری از ریاضیدانان تلاش زیادی کردند ، ولی نتیجه‌ای نگرفتند .

 

اشکالات وارد بر هندسه اقلیدسی :

لازم به توضیح است که تمامی اصول و مفاهیم هندسه اقلیدسی تنها شامل نظریات خود اقلیدس نمی‌شود بلکه اکثرا مجموعه‌ای جمع آوری شده از هندسه مصری‌ها و بابلی‌ها توسط اقلیدس است . هندسه اقلیدسی بر اساس پنج اصل موضوعه زیر شکل گرفته و طبقه بندی شده است :

اصل اول - از هر نقطه می‌توان خط مستقیمی به هر نقطه دیگری کشید یا اینکه کوتاه‌ترین فاصله مابین دو نقطه یک پاره خط مستقیم است .

اصل دوم - هر پاره خط مستقیم را می‌توان روی همان خط به‌طور نامحدود امتداد داد .

اصل سوم - می‌توان دایره‌ای به هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد .

اصل چهارم - همه زوایای قائمه با هم مساوی هستند .

اصل پنجم - از یک نقطه خارج یک خط ، یک و تنها یک خط می‌توان موازی با خط مفروض رسم کرد .

طبق تعاریف فعلی " اصل پنجم اقلیدس که ایجاز سایر اصول را نداشت ، به هیچ وجه واجد صفت بدیهی نبود . در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل . بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سوال قرار گیرد . زیرا چنین تصور می‌شد که شاید بتوان آن را به‌عنوان یک قضیه ، و نه یک اصل از سایر اصول استخراج کرد ، یا حداقل به‌جای آن می‌توان معادل قابل قبول‌تری قرار داد . در طول تاریخ بسیاری از ریاضیدانان از جمله خیام ، خواجه نصیرالدین توسی ، جان والیس ، لژاندر ، فور کوش بویوئی و ... تلاش کردند تا اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرند و آن را به عنوان یک قضیه اثبات کنند ، اما تمام این تلاش‌ها بی‌نتیجه بود و در اثبات دچار خطا می‌شدند و یا به نوعی همین اصل را در اثبات خود بکار می‌بردند . سرانجام دالامبر این وضع را افتضاح هندسه نامید ."

اما موضوع بسیار مهم این است که اشیا در دنیای فیزیکی با هندسه اقلیدسی سازگارند و هندسه‌های نااقلیدسی زیر مجموعه‌ای از هندسه اقلیدسی محسوب میشوند به طور مثال یک مکعب را در نظر بگیرید که در فضای اقلیدسی ، از نظر هندسی کاملا اقلیدسی است و اگر کره محیط یا محاط آن را رسم کنیم داخل سطح کره با هندسه هذلولی و خارج سطح کره با هندسه بیضوی برسی و مطالعه میشود و اینک برای اثبات اصل پنجم هندسه اقلیدسی چه کاری میتوان انجام داد . در این مبحث به استناد اصول و مفاهیم تعریف شده در حیطه هندسه اقلیدسی سعی در ارایه راهکاری برای اثبات این اصل می‌کنیم .


دانلود با لینک مستقیم


تحقیق در مورد تاریخچه هندسه

دانلود مقاله هندسه در راز و رمزهای دینی

اختصاصی از ژیکو دانلود مقاله هندسه در راز و رمزهای دینی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله هندسه در راز و رمزهای دینی


دانلود مقاله هندسه در راز و رمزهای دینی

مقدمه:

در جهان باستان، اعتقادات دینی و اسطوره‌ای سر منشأ بسیاری حرکت‌های انسانی بود. درون و ذات هر پدیده‌ای که رخ می‌داد به نوعی به اسطوره و دین پیوند می‌خورد و هنر بهترین وسیله برای نمایش این تفکر دینی و اسطوره‌ای بود.

در هنر باستانی، برخی نقش‌ها و نمادها صرفا تصویر نبودند بلکه نماد یک عقیده و سمبل دینی بودند. از میان این نشانه‌های دینی می‌توان به دایره اشاره کرد. دایره در جهان باستان از جمله بین‌النهرین، ایران، مصر، هند و تمدن‌های بودایی مذهب نقش مهمی را به عنوان سمبل دینی به عهده گرفته است.

حضور دایره در ابتدا در ادیان خدا - خورشید، از بین‌النهرین شروع شد و به ایران رفت. دایره نماد خدای خورشید بود ولی بعدها به عنوان نماد دینی و عقیدتی به مصر و چین و هند و... رفت و نقش‌های متعددی به خود گرفت.

دایره و مرکز از جمله رمزهای اساسی محسوب می‌شوند. درخت زندگی و مار، در زمانی اساطیری و در بهشت روی زمین که مستدیر توصیف شده، نشانه‌ها و نگاهبانان مرکز بودند. در غالب تمدن‌ها، ابدیت به شکل دایره و چرخ و اروبوروس، ماری که دمش را گاز گرفته تصویر می‌شود. شکل مدور نمودار یکی از مهم‌ترین جهات زندگی یعنی وحدت و کلیت و شکفتگی و کمال است. انسان غالبا در درون دایره‌ای که نشانگر تناسبات پیکر است تصویر شده است. در بسیاری سنن، به این شکل بسته که انسان را در برگرفته؛ محافظت می‌کند، کار ویژه‌ای جادویی منسوب شده است.(مونیک دوبوکور،1376،ص77(

شامل 20 صفحه فایل word


دانلود با لینک مستقیم


دانلود مقاله هندسه در راز و رمزهای دینی