ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد تاریخچه ریاضیات

اختصاصی از ژیکو تحقیق درمورد تاریخچه ریاضیات دانلود با لینک مستقیم و پر سرعت .

تحقیق درمورد تاریخچه ریاضیات


تحقیق درمورد تاریخچه ریاضیات

دسته بندی : ریاضی و آمار،

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

فروشگاه کتاب : مرجع فایل 

 


 قسمتی از محتوای متن ...

تعداد صفحات : 11 صفحه

«تاریخچه مختصر ریاضیات» -------------------------------------------انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش دقیق تری بوجود آورد لذا به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود.
این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود.
سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساکن  بودند.
آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
نخستین دانشمند معروف یونانی طالس ملطلی (639- 548 ق.
م.) است که در پیدایش علوم نقش مهمی به عهده داشت و می توان وی را موجد علوم فیزیک، نجوم و هندسه دانست.
در اوایل قرن ششم ق.
م.
فیثاغورث (572-500 ق.
م.) از اهالی ساموس یونان کم کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت.
پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490 ق.
م.
در ایلیا متولد شده است نام ببریم.
در اوایل نیمه دوم  قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسه جدید ما را تشکیل می دهند.
در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعد از او نیز همچنان برپا ماند.
این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضی دان معاصر وی ادوکس با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیرعادی ندارد و می توان مانند سایر اعداد قواعد حساب را در مورد آنها به کار برد.
در قرن دوم ق.
م.
نام تنها ریاضی دانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود.
این ریاضیدان و منجم بزرگ گامهای بلند و استادانه ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.
بطلمیوس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارد در تعقیب افکار هیپارک بسیار کوشید.
در سال 622 م.
که حضرت محمد (ص) از مکه هجرت نمود در واقع آغاز شکفتگی تمدن اسلام بود.
در زمان مأمون خلیفه عباسی تمدن اسلام به حد اعتلای خود رسید به طوری که از اواسط قرن هشتم  تا اواخر قرن یازدهم زبان عربی زبان علمی بین المللی شد.
از ریاضیدانان بزرگ اسلامی این دوره  یکی خوارزمی می باشد که در سال 820 به هنگام خلافت مأمون در بغداد کتاب مشهور الجبر و المقابله  را نوشت.
دیگر ابوالوفا (998-938) است که جداول مثلثاتی ذیقیمتی پدید آورد و بالاخره محمد بن هیثم (1039-965) معروف به الحسن را باید نام برد که صاحب تألیفات بسیاری در ریاضیات  و نجوم است.
قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست.
عامه مردم در منتهای فلاکت و بدبختی به سر می بردند.<br

  متن بالا فقط تکه هایی از محتوی متن مقاله میباشد که به صورت نمونه در این صفحه درج شدهاست.شما بعد از پرداخت آنلاین ،فایل را فورا دانلود نمایید 

 

 


  لطفا به نکات زیر در هنگام خرید دانلود مقاله :  توجه فرمایید.

  • در این مطلب،محتوی متن اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در ورد وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید.
  • پس از پرداخت هزینه ،ارسال آنی مقاله یا تحقیق مورد نظر خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد.
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل متن میباشد ودر فایل اصلی این ورد،به هیچ وجه بهم ریختگی وجود ندارد.
  • در صورتی که محتوی متن ورد داری جدول و یا عکس باشند در متون ورد قرار نخواهند گرفت.
  • هدف اصلی فروشگاه ، کمک به سیستم آموزشی میباشد.
  • بانک ها از جمله بانک ملی اجازه خرید اینترنتی با مبلغ کمتر از 5000 تومان را نمی دهند، پس تحقیق ها و مقاله ها و ...  قیمت 5000 تومان به بالا میباشد.درصورتی که نیاز به تخفیف داشتید با پشتیبانی فروشگاه درارتباط باشید.

دانلود فایل   پرداخت آنلاین 


دانلود با لینک مستقیم


تحقیق درمورد تاریخچه ریاضیات

دانلود فایل تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر

اختصاصی از ژیکو دانلود فایل تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر دانلود با لینک مستقیم و پر سرعت .

دانلود فایل تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر


دانلود فایل  تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر

 تجربیات مدون چگونه  با  تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر می توان این درس را برای دانش آموزان جذاب کرد

فرمت فایل: ورد

تعداد صفحات: 37

 

 

 

 

چکیده

انتزاعی بودن علم ریاضیات امکان احساس مفاهیمش را دشوار  و در نتیجه آموزش و یاد گیری آن را سخت کرده است به طوری که روش های آموزشی خاصی را می طلبد . روش های آموزشی در ابتدا باید حالت کاربردی داشته باشند  تا دانش آموزان دوره ی ابتدایی  بتوانند  توانایی لازم برای درک آن ها را در خود ایجاد نمایند.  

شیوه ی آموزش برای ریاضیات بخصوص در دوره ی ابتدایی باید با کشاندن دانش آموز به راه کشف و شهود، آماده ساختن او به پژوهش ،عادت دادن او به تفکر منطقی، تشویق او به پرسشگری و جستجو گری و با خلاق ساختن ذهن او همراه باشد و از آن جا که کاربردهای امروزی ریاضیات، از چار چوب موضوع های درسی این علم    عدد و شکل هندسی  ) پا  فراتر گذاشته است ، می توان مهارت های ذکر شده را  با نمونه های جدی  و آموزنده ای از کاربرد ریاضیات تلفیق کرد و بعد آن ها را به دانش آموزان یاد داد .

 

 

 

مقدمه:

      یکی ازعواملی که در فرایند های یاد گیری و درنتیجه در وضعیت آموزش ریاضی دردوره ی ابتدایی تاثیرمی گذارد ، روش های یاد دهی و یاد گیری این درس است . امروزه سرعت رشد علم هر ثانیه افزایش می یابد ، به همین جهت  ،  روش های آموزشی  متاثر از همین رشد و تحول تکنولوژی ،  همچنین تغییر سلایق ، نیاز ها  و  انتظارات دانش آموزان تغییر می کند  .  بنابراین در عصر امروز یک معلم  باید  روش های آموختن  و تجربه کردن را به دانش آموزان یاد  دهد   نه این که  به انتقال اطلاعات و روابط  بین خود  و آن ها بپردازد .  پس باید روشهای نوین و جدیدی بر این اساس پایه گذاری شود .  ریاضیات ، علمی با مفاهیم ذهنی و انتزاعی است ،  یعنی بسیاری از مفاهیم ریاضی ،  تصوّر اتی از اشیا هستند  ریاضیات ، علمی با مفاهیم ذهنی و انتزاعی است ،  یعنی بسیاری از مفاهیم ریاضی ،  تصوّر اتی از اشیا هستند  که ترجمان آن ها به همان صورت ذهنی در دنیای واقعی میسر نیست .  انتزاعی بودن علم ریاضیات امکان احساس مفاهیمش را دشوار  و در نتیجه آموزش و یاد گیری آن را سخت کرده است به طوری که روش های آموزشی خاصی را می طلبد . روش های آموزشی در ابتدا باید حالت کاربردی داشته باشند  تا دانش آموزان دوره ی ابتدایی  بتوانند  توانایی لازم برای درک آن ها را در خود ایجاد نمایند.  با توجه به


دانلود با لینک مستقیم


دانلود فایل تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر

دانلود تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر.

اختصاصی از ژیکو دانلود تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر. دانلود با لینک مستقیم و پر سرعت .

دانلود تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر.


دانلود  تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر.

 تجربیات مدون چگونه  با  تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر می توان این درس را برای دانش آموزان جذاب کرد

فرمت فایل: ورد

تعداد صفحات: 37

 

 

 

 

چکیده

انتزاعی بودن علم ریاضیات امکان احساس مفاهیمش را دشوار  و در نتیجه آموزش و یاد گیری آن را سخت کرده است به طوری که روش های آموزشی خاصی را می طلبد . روش های آموزشی در ابتدا باید حالت کاربردی داشته باشند  تا دانش آموزان دوره ی ابتدایی  بتوانند  توانایی لازم برای درک آن ها را در خود ایجاد نمایند.  

شیوه ی آموزش برای ریاضیات بخصوص در دوره ی ابتدایی باید با کشاندن دانش آموز به راه کشف و شهود، آماده ساختن او به پژوهش ،عادت دادن او به تفکر منطقی، تشویق او به پرسشگری و جستجو گری و با خلاق ساختن ذهن او همراه باشد و از آن جا که کاربردهای امروزی ریاضیات، از چار چوب موضوع های درسی این علم    عدد و شکل هندسی  ) پا  فراتر گذاشته است ، می توان مهارت های ذکر شده را  با نمونه های جدی  و آموزنده ای از کاربرد ریاضیات تلفیق کرد و بعد آن ها را به دانش آموزان یاد داد .

 

 

 

مقدمه:

      یکی ازعواملی که در فرایند های یاد گیری و درنتیجه در وضعیت آموزش ریاضی دردوره ی ابتدایی تاثیرمی گذارد ، روش های یاد دهی و یاد گیری این درس است . امروزه سرعت رشد علم هر ثانیه افزایش می یابد ، به همین جهت  ،  روش های آموزشی  متاثر از همین رشد و تحول تکنولوژی ،  همچنین تغییر سلایق ، نیاز ها  و  انتظارات دانش آموزان تغییر می کند  .  بنابراین در عصر امروز یک معلم  باید  روش های آموختن  و تجربه کردن را به دانش آموزان یاد  دهد   نه این که  به انتقال اطلاعات و روابط  بین خود  و آن ها بپردازد .  پس باید روشهای نوین و جدیدی بر این اساس پایه گذاری شود .  ریاضیات ، علمی با مفاهیم ذهنی و انتزاعی است ،  یعنی بسیاری از مفاهیم ریاضی ،  تصوّر اتی از اشیا هستند  ریاضیات ، علمی با مفاهیم ذهنی و انتزاعی است ،  یعنی بسیاری از مفاهیم ریاضی ،  تصوّر اتی از اشیا هستند  که ترجمان آن ها به همان صورت ذهنی در دنیای واقعی میسر نیست .  انتزاعی بودن علم ریاضیات امکان احساس مفاهیمش را دشوار  و در نتیجه آموزش و یاد گیری آن را سخت کرده است به طوری که روش های آموزشی خاصی را می طلبد . روش های آموزشی در ابتدا باید حالت کاربردی داشته باشند  تا دانش آموزان دوره ی ابتدایی  بتوانند  توانایی لازم برای درک آن ها را در خود ایجاد نمایند.  با توجه به


دانلود با لینک مستقیم


دانلود تجربیات مدون تلفیق درس ریاضیات دوره ابتدایی با دروس دیگر.

تحقیق امار ریاضیات و نجوم

اختصاصی از ژیکو تحقیق امار ریاضیات و نجوم دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 26

 

در آمد ریاضی ها"ریاضیات و نجوم ارتباط بسیار نزدیکی در قرون مختلف تا به حال داشته اند.که البته نجوم بسیاری از مکشوفاتش را مدیون حمایتهای رابطه های ریاضی است.در این مقاله ی کلان، به این مهم پرداخته شده است."رصدخانه ای که مامون ضمیمه بیت الحکمه کرد، مرکزی شد برای مطالعه در نجوم و ریاضیات.در این رصدخانه مسلمین محاسبات مهم نجومی انجام دیدند چنانکه طول یک درجه از نصف النهار را با دقتی نزدیک به حاسبات ریاضی امروز اندازه گرفتند.تفصیل طرز عمل و محاسبه را ابن خلکان در شرح حال محمد بن موسی خوارزمی نقل میکند.ارقام معروف هندی از همین ایام نزد مسلمین متداول شد و ظاهرا" ترجمه کتاب نجومی سدهانته معروف به سندهند از سنسکریت به عربی که بوسیله ی محمد بن ابراهیم فزاری انجام شد و همچنین کارهای خوارزمی از اسباب رواج این ارقام شد، چنانکه جنب و جوش بازرگانی مسلمین و وسعت دامنه تجارت آنها بعدها موجب انتشار استعمال این نوع ارقام در اروپا شد.

در نجوم مطالع مسلمین مخصوصا" ارزنده بود.مطالعات بابلیها، هندوان و ایرانیان که به آنها رسید از اسباب عمده  (Albumasar) می خوانده اند: مجموعه در پیشرفت آنها: ابو معشر بلخی که اروپائیها در قرون وسطی وی را بنام زیجاتی داشت که در آن حرکات سیارات از روی طریقه هندی و رصد گنگ دز محاسبه شده بود و اگر چه اصل آن نمانده است اما آثار دیگر او از خیلی قدیم به زبان لاتینی ترجمه و مکرر چاپ شده است و اینهمه او را در نجوم در تمام قرون وسطی شهرت جهانی بخشید.با اینهمه، وی روی هم رفته به عنوان یک منجم بیشتر اهمیت دارد تا بعنوان یک عالم نجوم.از اینها گذشته، تجارب و اطلاعات صائبین نیز در پیشرفت نجوم اسلام تاثیر بسیار داشت.پابت ابن قره- که به هندسه و فیزیک علاقه داشت، در تحقیق طول سال شمسی و درجه آفتاب  مطالعات مهمی کرد.بتانی که نیز از میراث صائبین بهره داشت با تالیف زیجی در بسط هیئت و نجوم اسلامی تاثیر قابل ملاحظه ای داشت.وی حرکت نقطه اوج آفتاب را کشف کرد و بعضی اقول بطلیموس را در این باب نقد نمود.ملاحظات او در باب خسوف در محاسباتی که دانتورن (Dunthorn) از علماء قرن هجدهم اروپا کرد به عنوان یک راهنما یا محرک تلقی شد.نیز وی برای مسائل مربوط به مثلثات کروی راه حلهایی یافت که رجیومانتس (متوفی 1476) از آنها استفاده کرد.

سه شاهکار نجومی مسلمین در این زمینه به عقیده ی سارتون، یکی صور الکوکب عبد الرحمن صوفی است ( متوفی 376 ) دیگر زیج ابن یونس(متوفی 399) است که شاید بزرگترین منجمین اسلام باشد و چون وی آن را بنام احاکم بامرالله خلیفه فاطمی مصر ساخت زیج حاکمی خوانده می شود.سومین شاهکار نجومی عبارتست از زیج الغ بیگ که با همکاری امثال قاضی زاده رومی و غیاث الدین جمشید کاشانی تدوین شد اما قتل الغ بیگ مطالعات جدی مربوط به نجوم را در شرق در واقع پایان داد.ازجمله اقدامات علمی مسلمین در امور مربوط به ریاضی نجوم اصلاح  تقویم بود.در عهد جلال الدوله  ملکشاه سلجوقی که گویند عمر خیام هم با منجمین دیگر در این اصلاح همکاری داشت و تقویم جلالی که بدینگونه بوجود آمد از بعضی تقویم های مشابه که در اروپا بوجود آمد دقیقتر و شاید علمی تر بود.خواجه نصیر طوسی قطع نظر از تحریر اقلیدس و مطالعات راجع به مثلثات که آن را از گرو نجوم بیرون آورد و مستقل ساخت.در کتاب تذکره، هیئت بطلیموسی را به شدت انتقاد نمود و خود نظریات بدیعی پیشنهاد داد.اثبات و طرح عیوب

سیستم بطلیموس به ضرورت اظهار طرح تازه ای که بعدها بوسیله ی کوپرنیک عرضه شد، کمک کرد.

کوتاه در مورد مایاها

در میان بناهای باشکوه " مایا "ها در " په لنگ " و شهر" چیکن ایتزا " نقوش حجاری شده بسیاری بر تخت سنگها و دیوارها بچشم میخورد – اما سرامد تمام انها تابوت حجاری شده ای است, که بسیاری از باستان شناسان و دانشمندان علوم فضائی را به تعجب و تحسین وادار کرده است – این تابوت در سال 1952 توسط تیم کاوشگران پرفسور " البرتو روزلهالیر " بعد از گذشت 2 سال تلاش بی وقفه بدست امد . در کنار این تابوت انواع لوح های سنگی که وزن بعضی از انها بیش از 5 تن میباشد , بهمراه یک ماسک سنگی که با ظرافت بینظری ساخته شده است، بدست امد.پرفسور " ریماند کارتایر " باستان شناس نامی جهان که سالهای بسیاری صرف تحقیق و بررسی تمدنهای امریکای لاتین و بخصوص تمدن شگفت انگیز " مایا "ها کرده است, بعد از یک کار طاقت فرسا توانست رمز کتیبه ها و همچنین تابوت حجاری شده را پیدا کرده و انرا ترجمه نماید. کار پرفسور " ریماند کارتایر " چون طوفان سهمگینی بود که بر اندیشه دانشمندان امروزی ما تازیانه می زد – خبر بسیار حیرت انگیز و شگفت اور بود – مایاها هزاران سال پیش, از نیروی الکترو مغناطیس زمین با خبر بودند .

انها درک عمیقی از سیستم خورشیدی و پرتوهای حرارتی ان داشته اند . سئوالی که دانشمندان از خود میپرسیدند این بود : چگونه .؟!! مایاها از کجا به این دانش عظیم دست پیدا کرده بودند.؟ این سئوالی است که دانش امروز جوابی برای ان ندارد . متاسفانه بخش عظیمی از کتیبه ها "مایا"ها نابود شده است – اما همان اندک مدارک, دال بر دانشی می کنند که دانش امروز قادر به درک ان نیست .

وزن سنگهای بکار رفته در این بنای اسرار امیز هر کدام بیش از 25 تن میباشد – که بصورت باور نکردنی صیقل داده شده است - در اطراف این قعله اسرار امیز هیچ مدخل یا ورودی کشف نشده است. ایا " اینکا"ها بخود انهمه زحمت طاقت فرسا میدادند که یک بنای بی درب بسازند.؟!! یا انها میدانستند چگونه از این دیوارهای غول پیکر عبور کنند؟! همانطور که در بالا اشاره شد، توضیحات مفصلی از "اینکا"ها و "مایا"ها بارها بیان شده است و همانگونه که میدانید این قوم اسرار امیز خبرگان علوم ریاضیات – نجوم و ستاره شناسی بودند – "مایا"ها از چرخ استفاده نمیکردند – اما جاده های پهن و یکدست انها باستان شناسان را به این فکر انداخت که انها چه نیازی به این جاده های پهن داشتند؟! محاسبات بسیار دقیق ریاضی – ستاره شناسی و نجوم بینظیر از "مایا"ها تمدنی ساخته که بقول پرفسور "اریک فن دانکین" "مایاها" ربوتیک ترین تمدن جهان هستند.!! تمام زندگی و دانش انها از روی تقویم و برنامه شکل میگرفته است. تمام بناهای باشکوه از روی برنامه و تقویم مایائی ساخته شده است.!! چه کس این تقویم را در اختیار انها قرار داده است.؟!! سئوالی که هنوز پاسخی به ان داده نشده! در یک افسانه مایائی بنام "پوپول وه " اینچنین میگوید : خدایان قادر به شناختن و دانستن همه چیز بودند, کیهان و چهار جهت اصلی – قطب های زمین و همچنین گرد بودن شکل زمین را میدانسته اند.!! چگونه اجداد "مایا"ها از گرد بودن زمین باخبر بودند؟!

حال به بحث محاسبات ریاضی مایاها در نجوم میپردازیم:

انان نه تنها صاحب یک تقویم افسانه ای بودند بلکه محاسبات باور نکردنی هم انجام داده اند که تا امروز چون یک معما حل نشده است . انان می دانستند که سال زهره 584 روز است و مدت سال زمینی را هم در حدود 2410و 365 روز محاسبه کرده اند ( محاسبه دقیق امروزی عدد 2422و 365 است) – محاسبات مایائی به 64 میلیون سال پیش برمیگردد .نوشته های دیگر در جزئیاتی بحث میکند که قریب به 400 میلیون سال قدمت دارد . این فرمولهای مشهور زهره ای را- تنها میتوان با یک کامپیوتر امروزی محاسبه کرد . به هر تقدیر بسیار مشگل است که منشاء این حقایق را از مردمانی جنگل نشین که بسیاری انها را وحشی میدانند بدانیم . فرمول مشهور نجومی "مایا"ها از قرار زیر است : تزولکین 260, سال زمینی 365 و سال زهره ای 584 روز است . این اعداد ظاهرا حاصل یک تقسیم ساده عجیب را, پنهان نگاه میدارند . اما 365 مساوی حاصل ضرب 73 در 5 و584 مساوی حاصل ضرب 73 در 8 است . 960 37 = 73 × 2 × 260 = 73 × 2 × 13 × 20 ماه 960 37 = 73 × 5 × 104= 73 × 5 × 13 × 8 خورشید960 37 = 73 × 8 × 65 = 73 × 8× 13× 5 زهره به عبارت دیگر تمام این ادوار بعد از 37960 روز با هم تقارون پیدا می کنند . اساطیر مایائی مدعی است که بعد از این ,خدایان به محل استراحتگاه بزرگ خود باز خواهند گشت . براستی این محاسبات پیچیده – شگفت انگیز نیست .؟!! در مدت 8 سال زمینی – زهره 13 بار به دور خورشید میگردد و این محاسبات را "مایا"ها به شکل بینظیری انجام داده اند

رابطه ریاضی فاصله سیارات تا خورشیدسال 1766 میلادی، یوهان تیتوس منجم آلمانی توانست رابطه ساده ای بیابد که با استفاده از آن می شد فاصله سیارات از خورشید را بدست آورد. چند سال بعد نیز دیگر منجم هموطن او، یوهان الرت بُد، این رابطه را مستقلا" دوباره کشف کرد.البته این رابطه را هر دو از طریق بازی با اعداد بدست آوردند و بدست آوری آن رابطه پایه علمی نداشت. امروزه این رابطه به رابطه تیتوس_بُد مشهور است. این رابطه بدین صورت است:

فاصله سیاره از خورشید(بر حسب فاصله متوسط زمین از خورشید)=0.4+)0.3*n(• n=1,2,4,8,.....• اعداد بدست آمدهبا دقت خوبیبا فاصله واقعی سیارات هم خوانی داشت:برای فاصله 2.8 برابر فاصله زمین از خورشید در آن زمان سیاره ای یافت نشده بود. بسیاری از اخترشناسان عقیده داشتند که سیاره ای کوچک در این فاصله بین مریخ و مشتری وجود دارد که کشف نشده است. جستجوی منظم نوار دایرِةالبروج برای یافت این سیاره مفقود از اواخر قرن هجدهم شروع شد و سرانجام در اولین روز قرن نوزدهم، یک منجم ایتالیایی به نام جوزپه پیاتزی، موفق شد جسم کوچکی را در حدود این فاصله از خورشید بیابد که آن را سِرِس نامید. بعد از آن نیز اجرام دیگری با همین فاصله از خورشید کشف شدند. اخترشناسان آن دوران این نظریه را پیش کشیدند که در آن فاصله از خورشید، بجای یک سیاره، تعداد زیادی سیارک وجود دارد که با کشف تعدادزیادی از این سیاکها در سالهای بعد این نظریه تایید شد.در حقیقت رابطه تیتوس_بُد محرک اصلی کشف سیارکها بود.

سالها بعد نیز سیاره اورانوس کشف شد که فاصله اش با فاصله پیشبینی شده توسط رابطه تیتوس_بُد نیز می خواند!(19.6 بنابر رابطه و 19.9 بنابر اندازه گیری). اما فاصله سیارات بعدی نپتون و پلوتو در این رابطه صدق نمی کنند. امروزه نظریه ای که به نظریه واهلش دینامیکی(Dynamical Relaxation) موسوم است توضیحی برای این رابطه یافته است. بنا به این نظریه، سیارات نخست در مدارات متفاوت تکوین یافتند؛ اما سپس به مداراتی منتقل شدند که نیروهای اغتشاشی گرانشی دیگر سیارات را به حداقل برسانند. نتیجه این کار از نظر ریاضی به روابطی شبیه رابطه تیتوس_بُد منجر می شود.

سیارات:عطارد    زهره     زمین    مریخ    ؟؟؟؟    مشتری    زحلجواب رابطه تیتوس-بد:               0.4       0.7       1.0     1.6      2.8      5.2       10

فاصله واقعی از خورشید :         0.39      0.72      1.0 


دانلود با لینک مستقیم


تحقیق امار ریاضیات و نجوم

روشهای درست مطالعه ریاضیات

اختصاصی از ژیکو روشهای درست مطالعه ریاضیات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

روشهای درست مطالعه ریاضیات

 

سلاماین مقاله توسط آقای مفیدی یک معلم سخت کوش از کشورمان است تهیه شده این مطلب کمی زیاد است ُ می توانید آن را در (ورد) کپی کنید و بعد با دقت تمام بخوانید خیلی ها برایشان سوال است و پیش خود می گویند : چه جوری بخونم و روزی چه قدر، چه درسهایی رو مطالعه کنم که آمادگی برای هر گونه تست و تشریحی رو داشته باشم و از چه کتابهایی استفاده کنم» این. سوال ها بهانه بسیار خوبی است که در اینجا به طور مفصل به این پرسشها - که کاملا به حق و مورد نیاز بسیاری از دانش آموزان و حتی دانشجویان است - پاسخ دهیم ----------------------------------------------------------------- سوال بالا را به دو مرحله تقسیم می کنیم: (الف) چگونه می توان کتب درسی ریاضی را به طور عمقی مطالعه کرد؟ (ب) چگونه می توان در تست زدن موفق شد؟ آیا واقعاً راه میانبری - همانگونه که بسیاری از موسسات کنکور ادعا می کنند - وجود دارد؟ به هر یک از دو سوال بالا به شیوه ترتیبی و البته به صورت کاملا خلاصه پاسخ می دهیم. پاسخ سوال (الف): 1- برای خودتان برنامه هفتگی داشته باشید به گونه ای که اگر کسی از شما پرسید مثلاً روز دوشنبه ساعت 10 صبح یا پنجشنبه ساعت 5 بعد از ظهر قرار است چه کنید، برای آن پاسخ دقیقی داشته باشید. برنامه شما باید کاملا متعادل و به دور از هر گونه افراط و تفریط باشد. یک نوجوان دانش آموز و یا یک جوان دانشجو برای پیشرفت خود، غیر از فعالیتهای عمیق علمی متناسب با رشته خود، احتیاج به استراحت و خواب مناسب (حداقل 7 ساعت)، ورزش، دیدار دوستان و آشنایان، شرکت در فعالیتهای عبادی، اجتماعی، فرهنگی و سیاسی، دیدن برنامه های تلوزیونی، مطالعات غیر درسی مانند مطالعه روزنامه ها، مجلات، رمان و ... دارد. برنامه را به گونه ای طراحی کنید که اولا همه فعالیتهای لازم (حتی خواب و بیداری و غذا خوردن) شما را پوشش دهد و ثانیا شما را خسته نکند. توجه کنید که همه روشهای مطالعه که بعد از این توضیح خواهیم داد، باید تحت همین برنامه سازماندهی شود. 2- متن درس را مانند کسی بخوانید که می خواهد آنرا تدریس کند. حال ببینیم یک معلم خوب قبل از تدریس چه می کند: او با استفاده از تجربیات قبلی خود، ابتدا درس را کاملا و به طور عمیق مطالعه و سپس از مطالب آن خلاصه برداری می کند. به مطالب و تمرینات کتاب بسنده نمی کند و به وسیله کتب معتبر ، مطالب و مسائل جدید و جالبی به طرح درس خود می افزاید. گاهی هم برای اینکه بهتر و راحت تر تدریس کند، جداولی تهیه می کند و یا وسایلی با دست خود می سازد. بنابر این «اگر می خواهید خوب بخوانید، همانند یک معلم بخوانید.» اگر برایتان امکان دارد درس را برای دیگری تدریس کنید و به او اجازه دهید از شما سوالاتی درباره همان درس بپرسد. اگر چنین امکانی برایتان نیست، بعد از مطالعه و خلاصه برداری، کتاب را کنار بگذارید و همانند یک معلم همان درس را برای خودتان تدریس کنید. دقت کنید که میزان مهارت شما در تدریس یک درس معمولا برابر است با میزان فهم مطالب آن درس توسط شما.

__________________

 

- خودتان را به فکر کردن روی مساله های ریاضی عادت دهید. توجه کنید که بسیاری از مسائل خوب به راحتی حل نمی شوند بنابر این اگر در حل هر مساله ای موفق نشدید، ناامید نشوید. برای حل مسائل تلاش کنید هر چند اگر ساعتها و روزها وقت شما را بگیرد. از وقتهای اضافی (هنگام پیاده روی - ایستادن در صفهای مختلف اتوبوس، خرید نان و ...) برای حل مسائل و فکر کردن روی آنها استفاده کنید. روی مسائل کتابهای درسی خود خوب فکر کنید و برای حل آنها وقت بگذارید اما به آنها اکتفا نکنید. همیشه یک مساله جدید برای حل در ذهنتان داشته و به دنبال مسائل جدید باشید. از هیچ مساله ای نترسید. از مسائل مربوط به المپیادهای سالهای گذشته کشوری و بین المللی اطلاع داشته باشید و اگر فرصت کردید راه حل آنها را نیز پیدا کنید. در کل سعی کنید دایرة المعارف مسائل ریاضی ذهنتان را -یعنی مجموعه مسائلی که دیده اید نه مسائلی که حل کرده اید- دائماً توسعه دهید. اگر چند ماه خودتان را به این کارها عادت دهید، مسائل کتابهای درسی - و نتیجتاً تستهای کنکور- برایتان کاملا پیش پا افتاده خواهد شد. به امید خدا در همین تایپیک به بعضی از کتابهای معتبر مساله نیز اشاره خواهد شد. 4- مسائل جدید طراحی کنید. متن بعضی از مسائل کتاب را (بعد از حل آنها) به گونه ای مناسب تغییر دهید و سپس آنرا حل کنید. مثلا صورت و مخرج مساله را با هم عوض کنید، مثبها را منفی و منفی ها را مثبت کنید، اعداد را تغییر دهید، به مساله یک رادیکال اضافه یا کم کنید، اگر مساله ای با یک فرض به شما داده شده است فرض را بردارید و بررسی کنید که آیا مساله بدون آن فرض نیز درست یا نه، اگر درست است آنرا بدون آن فرض حل کنید و اگر درست نیست برای آن، مثال نقض ارائه کنید. بررسی کنید که آیا عکس مسائلی که به صورت شرطی داده شده اند درست است یا نه و ... 5- روی بعضی از مسائل گروهی کار کنید. می توانید چند مساله (از کتاب یا خارج آن) انتخاب و بین خود تقسیم و در فرصتی که معین می کنید روی آنها کار کنید و سپس راه حلها را با یکدیگر بررسی نمایید و اگر توانستید راه حل این مسائل را با معلمین خود نیز در میان بگذارید. 6- از مطالعه مجلات ریاضی (همانند «مجله برهان» و یا «رشد ریاضی») غافل نشوید. این مجلات تاثیر بسیار خوبی روی خواننده خود می گذارند. 7- اما آخرین پیشنهاد در این قسمت: در مسابقات علمی شرکتی فعال داشته باشید، چه در آنها برنده شوید، چه نشوید. اگر در شهر شما دانش آموزانی هستند که در مسابقات ریاضی موفق بوده اند، با آنها ارتباط علمی برقرار و از تجربیاتشان استفاده کنید. در حد توانتان در سمینارهای علمی مدرسه، شهر و ... شرکت کنید و اگر می توانید برای این سمینارها مقاله ای بنویسید و در آنها درباره کارتان سخنرانی کنید. گاهی هم به دانشگاههای شهرتان سری بزنید و اگر اجازه دادند از کتابخانه و فضای علمی آنجا استفاده کنید.

__________________

بودیم وکسی پاس نمی داشت که هستیم

باشد که نباشیم و بدانند که بودیم

 

 

پاسخ سوال (ب): به راستی آیا واقعاً راه میانبری در تست زنی- همانگونه که بسیاری از موسسات کنکور ادعا می کنند - وجود دارد؟ آیا واقعاً می توان دانش آموزی را که پایه علمی او بسیار ضعیف است با این به اصطلاح «روشهای من درآوردی» به رتبه های اول کنکور رساند و قبولی او را در دانشگاه تضمین کرد؟! مطمئن باشید که چنین راهی وجود ندارد! دلیل آن نیز -غیر از تجربه های این حقیر و سایر همکارانم- رتبه اولی های کنکور هستند. سالهاست که بسیاری از رتبه های اول کنکور در مصاحبه های خود بیان می کنند که حتی یک کلاس کنکور هم ندیده اند و عامل موفقیت خود را بعد از توکل بر خدا و زحمات پدر و مادر و معلمینشان، تلاش و کوشش خود می دانند و معمولا به این نکته هم اشاره می کنند که از اولین روزهای ورورد به دبیرستان درسها را خوب و عمیق خوانده اند و آنرا به روزهای نزدیک کنکور حواله نکرده اند. متاسفانه تبلیغات کاملاً حساب شده ای که سالهاست موسسات کذایی کنکور حتی در رادیو و تلوزیون به راه انداخته اند کار خود را کرده و باعث تغییر ذائقه علمی خانواده ها شده است به طوریکه با نهایت تاسف بسیاری از پدر و مادران عزیز ما قبولی فرزندانشان در کنکور را مساوی شرکت آنها در موسسات کنکور می دانند که البته این تغییر ذائقه به نفع جیب مبارک این موسسات هم تمام شده است و بد نیست بدانید که طبق آماری، مجموع پولی که موسسات کنکور کشور سالیانه به جیب می زنند تقریبا برابر است با پولی که از صنعت نفت عاید کشور می شود(!!!) بنابر این بهتر است نام بعضی از این موسسات را «کارخانجات صنایع کنکور» بگذاریم. این را به تجربه خدمتتان عرض می کنم - و با تحقیق کوچکی خودتان نیز به آن دست می یابید- که اکثریت کسانی که نامشان در بروشورهای تبلیغاتی یا در تبلیغات صدا و سیمای موسسات کنکور به عنوان قبولیهای رتبه های اول دانشگاه از آن موسسه آورده می شود از دانش آموزان باسواد و معدل بالای دبیرستان هستند که اگر در آن موسسه شرکت هم نمی کردند در دانشگاه قبول می شدند. فکر می کنید چند درصد از این دانش آموزان از آنهایی بوده اند که سطح معلومات علمیشان از متوسط به پایین است و با معجزه این آقایان به دانشگاه راه یافته اند؟! اگر هم چنین افرادی در میان قبولیها پیدا شود اولا درصدشان بسیار پایین است، ثانیاً خودشان هم بسیار تلاش کرده اند و اگر همین تلاش را بیرون از موسسه می کردند چه بسا رتبه بهتری می آوردند. حتی اگر چنین افرادی به طور کاملا تصادفی و به قول خودشان با کلکهای کنکوری- و یا علل دیگری که درست نیست در اینجا درباره آنها صحبت کنیم - در دانشگاه قبول شده اند تازه اول بدبختی آنهاست. اینها معمولا در دانشگاه دوام نمی آورند و یا با هزار بدبختی و فلاکت فارغ التحصیل می شوند. حال با این مقدمه طولانی سعی می کنیم به سوال قسمت (ب) پاسخ دهیم: 1- مطمئن شوید که دروس ریاضی را به طور عمقی مطالعه کرده اید، روی مسائل ریاضی داخل و خارج کتاب به اندازه لازم فکر کرده اید و موفق به حل بسیاری از آنها شده اید. از لحاظ روانی خود را متقاعد کنید که قوت و قدرت علمی لازم را برای رقابت با دیگران در مسابقه ای به نام کنکور به دست آورده اید. به طور خلاصه مطمئن شوید که در حد توانتان به مراحل قسمت (الف) -که در بالا به آنها اشاره شد - عمل کرده اید. توجه کنید که این مرحله بسیار مهم است و بدون عبور از این مرحله به هیچ عنوان نباید وارد مراحل بعدی شوید. 2- تستهای «خام» ریاضی ده سال اخیر کنکور سراسری را تهیه کنید. به عبارت «خام» توجه کنید. تستها دقیقا باید همانهایی باشند که در کنکور سراسری بدون هیچ گونه دخل و تصرفی به داوطلبان داده شده است. در بعضی از کتابها تستها به صورت طبقه بندی شده و موضوعی هستند. این گونه کتابها و جزوات برای این مرحله مناسب نیستند. 3- بعد از تهیه این تستها، سوالات کنکور دو سال اخیر را کنار بگذارید به گونه ای که جلوی چشمان شما نباشد. به اصطلاح آنها را در قرنطینه بگذارید. سپس چند روزی با فرصت مناسبی که برای خود کنار می گذارید، تستهای هشت سال باقیمانده را موضوع بندی کنید. به طور مثال سوالات سال 75 کنکور را بردارید و از تست اول شروع کنید. با دقت تمام تعیین کنید که این تست مربوط به کدام کتاب درسی و کدام موضوع و فصل آن کتاب است و این موارد را یادداشت کنید. (در این مرحله لازم نیست که خود تست را حل کنید.) همین کار را تا تست آخر انجام دهید. بعد از اتمام این کار، تستهای هم موضوع را کنار یکدیگر در دفتری یادداشت کنید و سپس برای خود آماری از این موضوعات تهیه کنید که مثلا چند درصد از تستها در موضوع توابع، حد و پیوستگی، مشتق ، انتگرال ، خط و صفحه، ماتریسها، مثلثات، محاسبات لگاریتمی و ... هستند. همین کارها را برای سالهای دیگر نیز تکرار کنید و در آخر، درصد موضوعی تستهای این هشت سال را محاسبه کنید. حال با نگاهی کلی می توانید حدس بزنید که از کدام موضوع بیشتر سوال طرح شده است و باید روی کدام موضوعات بیشتر کار کنید و اگر ضعفی دارید برطرف نمایید. 4- حالا شروع کنید و تستهای هم موضوعی که کمترین درصد آمار شما را دارند حل کنید. در حل تستها عجله نکنید. آنرا به عنوان یک مساله نگاه کنید نه به عنوان تست. مطمئن باشید که اگر درسها را به خوبی خوانده باشید و روی مسائل مختلف فکر کرده باشید، حل این تستها برایتان به هیچ عنوان سخت نخواهد بود. اگر موفق به حل تست شدید ، حل آنرا هم یاداشت کنید. اگر نتوانستید تست را حل کنید بلافاصله به جواب آن مراجعه نکنید و برای حل این تست تلاش کنید حتی اگر یکساعت هم وقت شما را بگیرد. اگر باز هم موفق نشدید به راه حل آن مراجعه کنید و اگر راه حلی در اختیارتان نبود وارد حل تست بعدی شوید و بعدا روش حل تستی که از عهده حل آن بر نیامده اید از معلمین یا دوستانتان بپرسید و روش آنرا هم در دفتر یاداشت کنید. به هیچ عنوان از اینکه نتوانسته اید تست را در چند ثانیه


دانلود با لینک مستقیم


روشهای درست مطالعه ریاضیات