ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ژیکو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

شیمی کوانتومی

اختصاصی از ژیکو شیمی کوانتومی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

شیمی آنتروپی

شیمی کوانتومی ، دانش کاربرد مکانیک کوانتومی در مسایل مربوط به شیمی است. اثر شیمی کوانتومی ، در شاخه‌های وابسته به شیمی قابل لمس است. مثلا :

علمای شیمی فیزیک ، مکانیک کوانتومی را (به کمک مکانیک آماری) در محاسبات مربوط به خواص ترمودینامیکی (مانند آنتروپی و ظرفیت حرارتی) گازها ، در تفسیر طیفهای مولکولی به منظور تائید تجربه خواص مولکولی (مانند طولها و زوایای پیوندی) ، در محاسبات نظری خواص مولکولی ، برای محاسبه خواص حالات گذار واکنشهای شیمیایی به منظور برآورد ثابتهای سرعت واکنش ، برای فهم نیروهای بین مولکولی و بالاخره برای بررسی ماهیت پیوند در جامدات بکار می‌برند.

علمای شیمی آلی از مکانیک کوانتومی ،‌ برای برآورد پایداریهای نسبی مولکولها ، محاسبه خواص واسطه‌های واکنش ، بررسی ساز و کار واکنشهای شیمیایی ، پیش بینی میزان ترکیبات و تحلیل طیفهای NMR استفاده می‌کنند.

علمای شیمی تجزیه از مکانیک کوانتومی برای تفسیر شدت و فرکانسهای خطوط طیفی استفاده می‌کنند.

علمای شیمی معدنی از نظریه میدان لیگاند که یک روش تقریبی مکانیک کوانتومی است، در توضیح خواص یونهای مرکب فلزات واسطه سود می‌برند.

روش های تشخیص واکنش های خود به خودی

عوامل خودبه خود بودن واکنش های شیمیای: 1-کاهش آنتالپی 2-افزایش آنتروپی

کاهش آنتالپی: انرژی درونی با پایداری رابطه ی عکس دارد پس تمام سیستم ها تمایل دارند با کاهش آنتالپی (انرژی درونی)خود به پایداری بیشتری برسند.

افزایش آنتروپی:

به طور کلی هرچه میزان تحرک ذرات تشکیل دهنده ی سیستم بیشترباشد نظم سیستم کمتراست.آنتروپی نشان دهنده ی میزان بی نظمی یک سیستم است

نکته1: افزایش دما سبب افزایش آنتروپی می شود.

نکته 2:آنتروپی در صفر مطلق برابر صفر می باشد.

تشخیص خودبه خودی بودن واکنش های شیمیایی:

1 - آنتروپی افزایش آنتالپی کاهش درهردمایی خودبه خودی

2- آنتروپی کاهش آنتالپی افزایش غیرخود به خود

3- آنتروپی افزایش آنتالپی افزایش در دماهای بالاخود به خودی و واکنش برگشت پذیر

4- آنتروپی کاهش آنتالپی کاهش در دماهای پایین خود به خودی و واکنش برگشت پذیر1

قانون دوم ترمودینامیک و آنتروپی

قانون اول ترمودینامیک به معرفی انرژی درونی ، U ، منجر شد. این کمیت تابع حالتی است که بر مبنای آن ، مجاز بودن یک فرآیند مورد قضاوت قرار می‌گیرد و ‌بیان می‌دارد که فقط تحولاتی مجاز است که انرژی داخلی کل سیستم منزوی ، ثابت بماند. قانونی که ملاک خودبخودی بودن را مشخص می‌سازد (قانون دوم ترمودینامیک) ، برحسب تابع حالت دیگری بیان می‌شود. این تابع حالت ، آنتروپی ، S ، است.

ملاحظه خواهیم کرد که بر مبنای آنتروپی قضاوت می‌کنیم که آیا یک حالت بطور خودبخودی از حالت دیگری قابل حصول می‌باشد. در قانون اول با استفاده از انرژی داخلی ، تحولات مجاز مشخص می‌شود (آنهایی که انرژی ثابت دارند). از قانون دوم با استفاده از آنتروپی ، تحولات خودبخودی از بین همان فرآیندهایی مشخص می‌شود که بر مبنای قانون اول مجاز می‌باشد.

بیان قانون دوم

آنتروپی سیستم منزوی در یک فرآیند خودبخودی افزایش می‌یابد:

که ، آنتروپی تمام قسمتهای سیستم منزوی می‌باشد.

از آنجایی که فرآیندهای برگشت ناپذیر (مانند سرد شدن شیئی تا دمای محیط و انبساط آزاد گازها) خودبخودی است، در نتیجه همه آنها با افزایش آنتروپی توام می‌باشند. این نکته را می‌توان به این صورت مطرح کرد که در فرایندهای برگشت ناپذیر آنتروپی تولید می‌شود. از طرف دیگر ، در فرایند برگشت پذیر توازن وجود دارد، یعنی سیستم با محیط در هر مرحله در تعادل است. هر مرحله بسیار کوچک در این مسیر برگشت پذیر بوده و پخش نامنظم انرژی روی نمی‌دهد و در نتیجه آنتروپی افزایش نمی‌یابد، یعنی در فرآیند برگشت پذیر آنتروپی ایجاد نمی‌شود. آنتروپی در فرآیندهای برگشت پذیر از بخشی از سیستم منزوی به بخش دیگری منتقل می‌گردد.

تعریف آماری آنتروپی

بر مبنای تعریف آماری ، فرض می‌شود که در واقع می‌توانیم با استفاده از فرمول ارائه شده توسط لوودیگ بولتزمن (Ludwing Boltzmann) در سال 1896 ، آنتروپی را محاسبه کنیم:

که k، ثابت بولتزمن است:

این ثابت به صورت به ثابت گاز ربط دارد. کمیت W تعداد راههای متفاوتی است که سیستم می‌تواند با توزیع اتمها یا مولکولها بر روی حالتهای در دسترس به انرژی خاصی برسد. واحد آنتروپی با واحد k یکسان است. در نتیجه واحد آنتروپی مولی ، می‌باشد؛ (این با واحد R و ظرفیت گرمایی یکی است.)

تعریف ترمودینامیکی انرژی

در روش ترمودینامیکی ، تمرکز بر روی تغییر آنتروپی در طول یک فرایند ، dS ، می‌باشد، نه مقدار معلق S. تعریف dS بر این مبناست که می‌توان میزان پخش انرژی را به انرژی مبادله شده به صورت گرما ، در حین انجام فرایند ربط داد. تعاریف آماری و ترمودینامیکی با هم سازگار می‌باشند. در شیمی فیزیک این یک لحظه نشاط آور است که بین خواص توده‌ای (که مورد نظر ترمودینامیک است) و خواص اتمها یک ارتباط برقرار شود.

تغییر آنتروپی محیط

تغییر آنتروپی محیط را با علامت 'dS نشان می‌دهیم. علامت پریم مربوط به محیط سیستم واقعی که در سیستم منزوی بزرگ قرار دارد، مربوط می‌شود. محیط را با یک مخزن حرارتی بزرگ (عملا یک حمام آب) نشان می‌دهیم که در دمای T باقی می‌ماند. مقدار گرمای منتقل شده به مخزن در اثر انجام کار مانند سقوط یک وزنه را با 'dq نشان می‌دهیم که این گرما به مخزن منتقل می‌شود. هرچه مقدار گرمای بیشتری به مخزن منتقل شود، حرکت حرارتی بیشتری هم در آن ایجاد می‌شود و از این رو ، پخش انرژی به میزان بیشتری اتفاق می‌افتد. از این نکته استنباط می‌شود که:


دانلود با لینک مستقیم


شیمی کوانتومی
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد